Abstract:
The present invention relates to a method for performing an image level copy of an information store. The present invention comprises performing a snapshot of an information store that indexes the contents of the information store, retrieving data associated with the contents of the information store from a file allocation table, copying the contents of the information store to a storage device based on the snapshot, and associating the retrieved data with the copied contents to provide file system information for the copied contents.
Abstract:
According to certain aspects, an information management system may instruct a first secondary storage computing device in a set of secondary storage computing devices to initiate a restore of a first group of a plurality of files from a first storage device associated with the first secondary storage computing device, the first group including a first file. The computing system may instruct a second secondary storage computing device in the set to initiate a restore a second group of the plurality of files from a second storage device associated with the second secondary storage computing device, the second group including the first file. The computing system can, upon receiving notification that the restore of the first file from the first storage device has completed prior to completion of the restore of the first file from the second storage device, cancel restoration of the first file from the second storage device.
Abstract:
A method for automatically encrypting files is disclosed. In some cases, the method may be performed by computer hardware comprising one or more processors. The method can include detecting access to a first file, which may be stored in a primary storage system. Further, the method can include determining whether the access comprises a write access. In response to determining that the access comprises a write access, the method can include accessing file metadata associated with the first file and accessing a set of encryption rules. In addition, the method can include determining whether the file metadata satisfies the set of encryption rules. In response to determining that the file metadata satisfies the set of encryption rules, the method can include encrypting the first file to obtain a first encrypted file and modifying an extension of the first encrypted file to include an encryption extension.
Abstract:
A data storage system protects virtual machines using block-level backup operations and restores the data at a file level. The system accesses the virtual machine file information from the file allocation table of the host system underlying the virtualization layer. A file index associates this virtual machine file information with the related protected blocks in a secondary storage device during the block-level backup. Using the file index, the system can identify the specific blocks in the secondary storage device associated with a selected restore file. As a result, file level granularity for restore operations is possible for virtual machine data protected by block-level backup operations without restoring more than the selected file blocks from the block-level backup data.
Abstract:
Virtualization sprawl can lead to virtual machines with no designated periodic backup. If the data associated with these unprotected virtual machines is not backed up, it cannot be restored if needed, leading to system failures. A data storage system identifies and protects the unprotected virtual machines. For instance, the system automatically identifies and categorizes unprotected virtual machines. The system further identifies those unprotected virtual machines that remain uncategorized, applies a default backup policy to the uncategorized and unprotected virtual machines, and backs up the virtual machines using the default backup policy.
Abstract:
The present invention relates to a method for performing an image level copy of an information store. The present invention comprises performing a snapshot of an information store that indexes the contents of the information store, retrieving data associated with the contents of the information store from a file allocation table, copying the contents of the information store to a storage device based on the snapshot, and associating the retrieved data with the copied contents to provide file system information for the copied contents.
Abstract:
Systems and methods integrate disparate backup devices with a unified interface. In certain examples, a management console manages data from various backup devices, while retaining such data in its native format. The management console can display a hierarchical view the client devices and/or their data and can further provide utilities for processing the various data formats. A data structure including fields for storing both metadata common to the client device data and value-added metadata can be used to mine or process the data of the disparate client devices. The unified single platform and interface reduces the need for multiple data management products and/or customized data utilities for each individual client device and provides a single pane of glass view into data management operations. Integrating the various types of storage formats and media allows a user to retain existing storage infrastructures and further facilitates scaling to meet long-term management needs.
Abstract:
According to certain aspects, a system includes a client device that includes a virtual machine (VM) executed by a hypervisor, a driver located within the hypervisor, and a data agent. The VM may include a virtual hard disk file and a change block bitmap file. According to some embodiments the driver intercepts write operations generated by the VM to store data in a sector, determines an identity of the sector based on the intercepted write operation, determines an entry in the change block bitmap file that corresponds with the first sector, and modifies the entry in the change block bitmap file to indicate that data in that sector has changed. The data agent may generate an incremental backup of the VM based on the change block bitmap file in response to an instruction from a storage manager, where the incremental backup includes the data in the sector where data was modified.
Abstract:
According to certain aspects, a system may include a data agent configured to: process a database file residing on a primary storage device(s) to identify a subset of data in the database file for archiving, the database file generated by a database application; and extract the subset of the data from the database file and store the subset of the data in an archive file on the primary storage device(s) as a plurality of blocks having a common size; and at least one secondary storage controller computer configured to, as part of a secondary copy operation in which the archive file is copied to a secondary storage device(s): copy the plurality of blocks to the secondary storage devices to create a secondary copy of the archive file; and create a table that provides a mapping between the copied plurality of blocks and corresponding locations in the secondary storage device(s).
Abstract:
An illustrative “Live Synchronization” feature in a data storage management system can reduce the downtime that arises in failover situations. The illustrative Live Sync embodiment uses backup data to create and maintain a ready (or “warm”) virtualized computing platform comprising one or more virtual machines (“VMs”) that are configured and ready to be activated and take over data processing from another data processing platform operating in the production environment. The “warm” computing platform awaits activation as a failover solution for the production system(s) and can be co-located at the production data center, or configured at a remote or disaster recovery site, which in some embodiments is configured “in the cloud.” Both local and remote illustrative embodiments are discussed herein. An “incremental forever” approach can be combined with deduplication and synthetic full backups to speed up data transfer and update the disaster recovery sites.