Abstract:
An improved content indexing system is disclosed herein that content indexing system combines the functionality of the backup metadata database and the content index database into a single backup and content index database to avoid the need to perform synchronization operations. By using a single backup and content index database, the content indexing system also reduces the computing performance costs that would be associated with the synchronization operations as the amount of indexed content increases, thereby solving scalability issues.
Abstract:
Content-aware systems and methods for improving de-duplication, or single instancing, in storage operations. In certain examples, backup agents on client devices parse application-specific data to identify data objects that are candidates for de-duplication. The backup agents can then insert markers or other indictors in the data that identify the location(s) of the particular data objects. Such markers can, in turn, assist a de-duplication manager to perform object-based de-duplication and increase the likelihood that like blocks within the data are identified and single instanced. In other examples, the agents can further determine if a data object of one file type can or should be single-instanced with a data object of a different file type. Such processing of data on the client side can provide for more efficient storage and back-end processing.
Abstract:
Systems and methods for reconstructing unified data in an electronic storage network are provided which may include the identification and use of metadata stored centrally within the system. The metadata may be generated by a group of storage operation cells during storage operations within the network. The unified metadata is used to reconstruct data throughout the storage operation cells that may be missing, deleted or corrupt.
Abstract:
An information management system is provided herein that combines data backup and data migration operations such that data appears available in a network-accessible folder when in fact the data is stored as a secondary copy in a secondary storage device. For example, a user can indicate that a first file should be added to the network-accessible folder. A client computing device can transmit the first file to a secondary storage computing device that performs a backup operation to store a backup copy of the first file in the secondary storage device. The secondary storage computing device can also generate an index of the first file, which includes a location of the backup copy of the first file, and transmit the index to a server that manages the network-accessible folder. Thus, the backup copy of the first file can be retrieved if the first file is selected via the network-accessible folder.
Abstract:
An information management system is provided herein that combines data backup and data migration operations such that data appears available in a network-accessible folder when in fact the data is stored as a secondary copy in a secondary storage device. For example, a user can indicate that a first file should be added to the network-accessible folder. A client computing device can transmit the first file to a secondary storage computing device that performs a backup operation to store a backup copy of the first file in the secondary storage device. The secondary storage computing device can also generate an index of the first file, which includes a location of the backup copy of the first file, and transmit the index to a server that manages the network-accessible folder. Thus, the backup copy of the first file can be retrieved if the first file is selected via the network-accessible folder.
Abstract:
In general, a data synchronization management system is disclosed in which files (and/or other data) are synchronized among two or more client computing devices in connection with a backup of those files. Synchronization polices specify files to be synchronized based on selected criteria including file data, metadata, and location information. In general, files are initially copied from a primary client computing device to secondary storage. Thereafter, files to be synchronized are identified from the secondary storage, and copied to other client computing devices. Additionally, synchronized files may be viewed and accessed through a cloud and/or remote file access interface.
Abstract:
Differential health-check systems and accompanying methods provide health-checking and reporting of one or more information management systems in reference to a first time period before and a second time period after a triggering event. A triggering event may be an upgrade of at least part of the information management system, or a restore operation completed in the information management system for example following a disaster, or any number of other events, etc. The health-checking and reporting may comprise a comparison of one or more performance metrics of one or more components and/or operations of the information management system during the first and second time periods.
Abstract:
According to certain aspects, a method can include electronically accessing, by a storage manager, a stored synchronization policy specifying at least a first folder associated with a first computing device and a second folder associated with a second computing device; identifying a first file stored in the first folder as a candidate for synchronization; receiving an indication as to a location of the first computing device and the second computing device; in response to a determination that the first computing device is not located within a geographic region, electronically generating and transmitting instructions to the first computing device to remove the first file from the first folder; and in response to a determination that the second computing device is located within the geographic region, electronically generating and transmitting instructions to cause transmission of the first file to the second computing device for storage in the second folder.
Abstract:
According to certain aspects, an information management cell with failover management capability can include secondary storage computing devices configured to conduct primary data from a primary storage device(s) to a secondary storage device(s) during secondary copy operations, at the direction of a remote storage manager, wherein a first secondary storage computing device implements a failover storage manager configured to, in the event of a loss of connectivity between the cell and the remote storage manager: access a stored storage policy; initiate a first secondary copy operation according to the storage policy in which the first secondary storage computing device is involved in the creation of a first secondary copy on the secondary storage device(s); and initiate a second secondary copy operation according to the storage policy in which a second secondary storage computing device is involved in the creation of a second secondary copy on the secondary storage device(s).
Abstract:
According to certain aspects, an information management cell can include at least one secondary storage computing device configured to conduct primary data generated by at least one client computing device to a secondary storage device(s) as part of secondary copy operations, wherein the secondary storage computing device normally operates to conduct primary data to the secondary storage device(s) for storage as a secondary copy in a first secondary copy file format, at the direction of a main storage manager; and can include a failover storage manager configured to activate in response to loss of connectivity between the cell and the main storage manager, and instruct a secondary copy application to perform a secondary copy operation in which the primary data generated by the at least one client computing device is stored as a secondary copy in a second secondary copy file format different than the first secondary copy file format.