Abstract:
A terminal computer display assembly, which fixes a monitor onto a rotary supporting base provided. The support has a set of rails with a plurality of positioning units longitudinally aligned, and an inclined angular-positioning unit to limit the backward inclination of the support within a particular range of angles. The monitor is fixed onto a sliding block which is attached to the set of rails, allowing the monitor to move up or down freely for in a suitable highly location. A buffering unit is installed between the sliding block and the base, and it can prevent the monitor from falling instantaneously while positioning the height. The base is furthermore built with a circuit board inside for act as in interface for connecting to other accessories.
Abstract:
A new capacitor device having two terminals is achieved. The device comprises a plurality of first conductive lines overlying a substrate. Each of the first conductive lines is connected to one of the capacitor device terminals. The adjacent first conductive lines are connected to opposite terminals. The first conductive lines comprise a plurality of conductive materials. A plurality of second conductive lines overlie the plurality of first conductive lines. Each of the second conductive lines is connected to one of the capacitive device terminals. Adjacent second conductive lines are connected to opposite terminals. Any second conductive line overlying any first conductive line is connected to an opposite terminal. The second conductive lines comprises a plurality of conductive materials. A first dielectric layer overlies the substrate and lies between the adjacent first conductive lines. A second dielectric layer lies between the first conductive lines and the second conductive lines.
Abstract:
A microelectronics device including a semiconductor device located at least partially over a substrate, a bombarded area located at least partially over the substrate and adjacent the semiconductor device, and a bombarded attenuator interposing the semiconductor device and the bombarded area.
Abstract:
A phase change memory structure and method for forming the same, the method including providing a substrate comprising a conductive area; forming a spacer having a partially exposed sidewall region at an upper portion of the spacer defining a phase change memory element contact area; and, wherein the spacer bottom portion partially overlaps the conductive area. Both these two methods can reduce active area of a phase change memory element, therefore, reducing a required phase changing electrical current.
Abstract:
A new capacitor device having two terminals is achieved. The device comprises a plurality of first conductive lines overlying a substrate. Each of the first conductive lines is connected to one of the capacitor device terminals. The adjacent first conductive lines are connected to opposite terminals. The first conductive lines comprise a plurality of conductive materials. A plurality of second conductive lines overlie the plurality of first conductive lines. Each of the second conductive lines is connected to one of the capacitive device terminals. Adjacent second conductive lines are connected to opposite terminals. Any second conductive line overlying any first conductive line is connected to an opposite terminal. The second conductive lines comprises a plurality of conductive materials. A first dielectric layer overlies the substrate and lies between the adjacent first conductive lines. A second dielectric layer lies between the first conductive lines and the second conductive lines.
Abstract:
A new magnetic RAM cell device is achieved. The device comprises a plurality MTJ cells each comprising a free layer and a pinned layer separated by a dielectric layer. A common conductive layer couples together all of the pinned layers of the MJT cell. A first end of the common conductive layer is switchably coupled to a programming line. A second end of the common conductive layer is switchably coupled to a ground. A pluraity of diodes is used. Each diode is coupled between one of the MJT cells and one of a plurality of bit lines.
Abstract:
A polishing head with a floating knife-edge mechanism includes a base, a retaining ring secured to the base defining a pocket area beneath the base, and a lower assembly floating within the pocket area via a diaphragm seal. The lower assembly includes a disk-shaped support plate having a plurality of apertures distributed in a center region of the support plate, a clamp ring used to secure the diaphragm seal along a rim region of the support plate, and the floating knife-edge mechanism positioned between the rim region and the center region of the support plate.