Systems and methods for underbody inspection of a moving vehicle with a smartphone

    公开(公告)号:US11513036B1

    公开(公告)日:2022-11-29

    申请号:US17320126

    申请日:2021-05-13

    Abstract: Systems and methods that allow a smartphone to be used as an imaging device for undercarriage inspection of a moving vehicle are provided. The method may include locating the smartphone on the ground via one or more sensors of the vehicle. The vehicle may generate a path for the vehicle to drive over the smartphone based on the location of the smartphone, and optionally display the path to facilitate manual driving of the vehicle by the driver over the smartphone. Alternatively, the vehicle may self-drive to follow the path. The smartphone may capture image data indicative of the undercarriage of the vehicle, inspect and analyze the image data to identify one or more issues of the undercarriage of the vehicle, and transmit the analyzed image data to the vehicle for display. The driver may confirm the one or more issues and transmit the data to an inspection professional for additional assistance if needed.

    Systems And Methods For Planning A Travel Route Of A Multifunctional Robot

    公开(公告)号:US20220113744A1

    公开(公告)日:2022-04-14

    申请号:US17066224

    申请日:2020-10-08

    Abstract: The disclosure generally pertains to travel planning for a multifunction robot that can travel on a ground surface and can fly over obstacles. In an example embodiment, a controller of the multifunction robot receives an Occupancy Grid map that provides information about a travel area to be traversed by the multifunctional robot. The controller may determine a first cost associated with a first travel route that involves the multifunctional robot driving around a 3D object when moving along the ground from an origination spot to a destination spot in the travel area. The controller may further determine a second cost associated with a second travel route that involves the multifunctional robot flying over the 3D object when moving from the origination spot to the destination spot. The controller may select either the first travel route or the second travel route based on comparing the first cost to the second cost.

    SMARTPHONE AND BATTERY INTEGRATION MODULE FOR AN ELECTRIC SCOOTER

    公开(公告)号:US20220006959A1

    公开(公告)日:2022-01-06

    申请号:US16919185

    申请日:2020-07-02

    Abstract: A battery expansion cradle is attachable to an electric scooter (eScooter) handlebar. The battery expansion cradle includes a battery connection terminal disposed on a face of the battery expansion cradle, where the battery connection terminal electrically connects with a power bus of the electric scooter. A battery module is removably attachable to the face of the battery expansion cradle and the back terminal of another battery. The battery module includes a connector electrically coupling the first rechargeable battery to the eScooter power bus, and includes a mobile device holder disposed on a face of the first battery module with holding means for securing a mobile device to the face of the battery module, which may be offset from the center of the external battery to allow for a clear forward view of the scooter using the smartphone's front camera, and the user's face using the rear camera.

    SELF-BALANCING AUTONOMOUS VEHICLE FLEET

    公开(公告)号:US20210096564A1

    公开(公告)日:2021-04-01

    申请号:US16588730

    申请日:2019-09-30

    Abstract: Autonomous vehicle fleet management systems are provided herein. An example method includes receiving, via a control module of a first electric vehicle, trip characteristics data associated with a second electric vehicle. The trip characteristics data includes information such as vehicle location, a trip destination, and a route plan associated with the second electric vehicle. The control module or a connected control server selects a charging station for recharging the first electric vehicle based at least in part on the trip characteristics data and at least one route optimization option associated with the first electric vehicle. The example method further includes determining a travel route to the charging station and navigating the first electric vehicle to the charging station along the travel route using an autonomous vehicle navigation system associated with the control module.

    Use of vehicle dynamics to determine impact location

    公开(公告)号:US10919475B2

    公开(公告)日:2021-02-16

    申请号:US16085385

    申请日:2016-03-15

    Abstract: Crash detection in a road vehicle includes determining an impact location. Acceleration and yaw rate are measured, and occurrence of an impact is detected by comparing a total acceleration to an impact threshold. An impact angle is determined according to an arctangent of a ratio of lateral and longitudinal accelerations. A center-of-gravity to impact distance is determined according to vehicle mass, moment of inertia, acceleration, and yaw rate. When the yaw rate is less than a yaw threshold and the impact angle is within a predetermined range of an integer multiple of 90°, then the impact location is determined in response to a projection of the impact distance selected according to signs of the accelerations. Otherwise, the impact location is determined in response to a projection of the impact distance selected according to signs of the accelerations and a sign of the yaw rate.

Patent Agency Ranking