Abstract:
A method includes controlling charging a battery pack of an electrified vehicle, via a control system of the electrified vehicle, based on climate conditions, traffic conditions, and learned driving habits of a driver of the electrified vehicle. The control system is configured to create a smart charging schedule for either adding or not adding an additional charge to the battery pack in anticipation of an expected upcoming drive cycle.
Abstract:
A battery system includes a first battery module, a second battery module, a supply line, a return line, and a film heater. The supply and return lines are configured to circulate a heat transfer medium in response to a first temperature condition, and the film heat is configured to heat the first battery module and the second battery module in response to a second temperature condition.
Abstract:
A battery thermal management system according to an exemplary aspect of the present disclosure includes, among other things, a heat spreader, a coolant channel attached to the heat spreader and a supply manifold fluidly connected with the coolant channel and configured to supply a heat transfer medium to the coolant channel. A return manifold is fluidly connected with the coolant channel and configured to expel the heat transfer medium from the coolant channel.
Abstract:
A method includes controlling charging a battery pack of an electrified vehicle, via a control system of the electrified vehicle, based on climate conditions, traffic conditions, and learned driving habits of a driver of the electrified vehicle. The control system is configured to create a smart charging schedule for either adding or not adding an additional charge to the battery pack in anticipation of an expected upcoming drive cycle.
Abstract:
A vehicle can include a traction battery and a controller in communication with the battery to determine the battery state using sensed battery electrode capacity to account for battery aging. The sensed battery electrode capacity can be dependent on active lithium ions at a positive electrode of the traction battery. The controller can compare a battery voltage model to measured battery voltage during a vehicle drive cycle, receive sensed current though put data and open circuit voltage at the battery, and determine if a deviation threshold is exceeded. The controller can also correct electrode capacity using a mean of the measured open-circuit voltage to correct the capacity error to less than one amp-hour or initiate an active lithium capacity correction using a variance of the current throughput to correct the capacity error to less than one amp-hour. This information can be used to control the vehicle and battery usage.
Abstract:
A vehicle charging system includes a vehicle propelled by an electric machine powered by a chargeable energy storage system. The charging system also includes a controller programmed to predict at least one upcoming plug-in event based on historical charging data, and define a plug-in routine based on a plurality of upcoming plug-in events. The controller is also programmed to set a charging schedule to coincide with the plug-in routine such that a target state of charge (SOC) is achieved at a conclusion of each of the plurality of upcoming plug-in events. Each target SOC corresponding to a plug-in event is based on minimizing a charging energy cost of the plug-in routine and an expected energy depletion ahead of a next subsequent plug-in event.
Abstract:
A method controlling a battery management system is provided. The method may include commanding by a controller a heat exchanger of a vehicle to pre-cool a traction battery of the vehicle key-off responsive to the vehicle being within a predetermined range of a predicted parking location, a current temperature of the traction battery being less than a temperature threshold, and a predicted parked temperature for the traction battery being greater than the temperature threshold.
Abstract:
A method includes controlling an electrified vehicle based on a route selected for a desired thermal management of a battery. An electrified vehicle includes at least one battery and a control system configured with instructions for automatically controlling the electrified vehicle based on the route selected for the desired thermal management of the battery.
Abstract:
A method includes controlling an electrified vehicle based on a route selected for a desired thermal management of a battery. An electrified vehicle includes at least one battery and a control system configured with instructions for automatically controlling the electrified vehicle based on the route selected for the desired thermal management of the battery.
Abstract:
In one or more embodiment, a method is provided for forming an insulating article from an insulating material having a first thickness, the method including the step of: compressing the insulating material to form a compressed insulating material having a second thickness smaller than the first thickness; and subsequent to the step of compressing, subjecting the compressed insulating material to a vacuum to form the insulating article.