摘要:
Various embodiments of the present invention provide systems and methods for data regeneration. For example, a method for data regeneration is disclosed that includes receiving a data input derived from a medium, determining a media defect corresponding to the data input, and determining an attenuation factor associated with the defective medium. Based at least in part on the determination that the medium is defective, amplifying the data input by a derivative of the attenuation factor to regenerate the data.
摘要:
Embodiments of the present invention provide optimization of read/write channels in a recording system by embedding channel optimization algorithm/procedure into the channels, or a system-on-chip (SOC) where a read/write channel is integrated with a disk drive controller, according to an Embedded Channel Optimization Solution (ECOS). In one embodiment, the ECOS comprises a setup/restore block configured to set up the read/write channel (separate or embedded in SOC) according to a pattern specified by an input received by the setup/restore block; a parameter/metric block configured to store the parameters to be optimized and a metric for each of the parameters; a metric measurement block configured to provide metric measurements based on the specified pattern; and a sweep compare select block configured to sweep each value of a plurality of values of the parameters, compare a current metric taken from the metric measurement block with a previous metric for each swept value of the parameters to identify a better metric, and select a value of each of the parameters corresponding to the better metric in order to optimize the plurality of parameters.
摘要:
Techniques are provided that generate bit reliabilities for a detected sequence. A detector generates the detected sequence. According to one embodiment, a post-processor finds a first set of combinations of one or more error events in the detected sequence satisfying a complete set or a subset of error correction constraints corresponding to the first bit value, finds a second set of combinations of one or more error events in the detected sequence satisfying a complete set or a subset of error correction constraints corresponding to the second bit value, selects a first most likely combination of one or more events of the first set and a second most likely combination of one or more events of the second set, and generates a bit reliability based on the first and the second most likely values.
摘要:
A method and apparatus for data coding for high-density recording channels exhibiting low frequency contents is disclosed. Coding is used that satisfies both Running Digital Sum (RDS) and Maximum Transition Run (MTR) properties, which are desirable for achieving high-density recording for recording channels exhibiting low frequency components such as perpendicular magnetic recording channel.
摘要:
Certain embodiments of the present invention are improved turbo-equalization methods for decoding encoded codewords. In one embodiment, in global decoding iteration i, the magnitude values of all decoder-input LLR values (Lch) are adjusted based on the number b of unsatisfied check nodes in the decoded codeword produced by global iteration i−1. The improved turbo-equalization methods can be used as the sole turbo-equalization method for a given global decoding session, or interleaved with other turbo-equalization methods.
摘要:
Various embodiments of the present invention provide systems and methods for data processing. For example, a variable iteration data processing system is disclosed that includes at least a first detector, a second detector, a decoder, and a queuing buffer. The first detector is operable to perform a data detection on an input data set at a first time. The decoder receives a derivation of an output from the first detector and performs a decoding process. Where the decoding process fails to converge, the decoder output is passed to the second detector for a subsequent detection and decoding process at a second time.
摘要:
Certain embodiments of the present invention are improved turbo-equalization methods for decoding encoded codewords. In one embodiment, in global decoding iteration i, the magnitude values of all decoder-input LLR values (Lch) are adjusted based on the number b of unsatisfied check nodes in the decoded codeword produced by global iteration i−1. The improved turbo-equalization methods can be used as the sole turbo-equalization method for a given global decoding session, or interleaved with other turbo-equalization methods.