Abstract:
Receiving point of interest zones and alerts on user devices comprises communicating, by a user computing device to a remote computing device, a request for point of interest data corresponding to points of interest within a proximity of the user device; presenting the received point of interest data; identifying a particular point of interest; and outputting an alert regarding the particular point of interest. Receiving point of interest zones on user devices comprises communicating a request for point of interest data; receiving the point of interest data from the remote network device wherein a size of the point of interest zone is determined based on a density of points of interest in the proximity of the user, and wherein the shape of the point of interest zone is expanded in a direction of travel and contracted in the opposite direction; and presenting the received point of interest data.
Abstract:
A geofence management system obtains location data for points of interest. The geofence management system determines, at the option of the user, the location of a user mobile computing device relative to specific points of interest and alerts the user when the user nears the points of interest. The geofence management system, however, determines relationships among the identified points of interest, and associates or “clusters” the points of interest together based on the determined relationships. Rather than establishing separate geofences for multiple points of interest, and then alerting the user each time the user's mobile device enters each geofence boundary, the geofence management system establishes a single geofence boundary for the associated points of interest. When the user's mobile device enters the clustered geofence boundary, the geofence management system notifies the user device to alert the user of the entrance event. The user then receives the clustered, geofence-based alert.
Abstract:
Comparing extracted card data from a continuous scan comprises receiving, by one or more computing devices, a digital scan of a card; obtaining a plurality of images of the card from the digital scan of the physical card; performing an optical character recognition algorithm on each of the plurality of images; comparing results of the application of the optical character recognition algorithm for each of the plurality of images; determining if a configured threshold of the results for each of the plurality of images match each other; and verifying the results when the results for each of the plurality of images match each other. Threshold confidence level for the extracted card data can be employed to determine the accuracy of the extraction. Data is further extracted from blended images and three-dimensional models of the card. Embossed text and holograms in the images may be used to prevent fraud.
Abstract:
A geofence management system obtains location data for points of interest. The geofence management system determines, at the option of the user, the location of a user mobile computing device relative to specific points of interest and alerts the user when the user nears the points of interest. The geofence management system, however, determines relationships among the identified points of interest, and associates or “clusters” the points of interest together based on the determined relationships. Rather than establishing separate geofences for multiple points of interest, and then alerting the user each time the user's mobile device enters each geofence boundary, the geofence management system establishes a single geofence boundary for the associated points of interest. When the user's mobile device enters the clustered geofence boundary, the geofence management system notifies the user device to alert the user of the entrance event. The user then receives the clustered, geofence-based alert.
Abstract:
A geofence management system obtains location data for points of interest. The geofence management system determines, at the option of the user, the location of a user mobile computing device relative to specific points of interest and alerts the user when the user nears the points of interest. The geofence management system, however, determines relationships among the identified points of interest, and associates or “clusters” the points of interest together based on the determined relationships. Rather than establishing separate geofences for multiple points of interest, and then alerting the user each time the user's mobile device enters each geofence boundary, the geofence management system establishes a single geofence boundary for the associated points of interest. When the user's mobile device enters the clustered geofence boundary, the geofence management system notifies the user device to alert the user of the entrance event. The user then receives the clustered, geofence-based alert.
Abstract:
A user captures an image of a payment card via a user computing device camera. An optical character recognition system receives the payment card image from the user computing device. The system performs optical character recognition and visual object recognition algorithms on the payment card image to extract text and visual objects from the payment card image, which are used by the system to identify a payment card type. The system may categorize the payment card as an open-loop card or a closed-loop card, or as a credit card or a non-credit card. In an example embodiment, the system allows or prohibits extracted financial account information from the payment card to be saved in the digital wallet account based on the determined payment card category. In another example embodiment, the system transmits an advisement to the user based on the determined payment card category.
Abstract:
Embodiments herein provide computer-implemented techniques for allowing a user computing device to extract financial card information using optical character recognition (“OCR”). Extracting financial card information may be improved by applying various classifiers and other transformations to the image data. For example, applying a linear classifier to the image to determine digit locations before applying the OCR algorithm allows the user computing device to use less processing capacity to extract accurate card data. The OCR application may train a classifier to use the wear patterns of a card to improve OCR algorithm performance. The OCR application may apply a linear classifier and then a nonlinear classifier to improve the performance and the accuracy of the OCR algorithm. The OCR application uses the known digit patterns used by typical credit and debit cards to improve the accuracy of the OCR algorithm.
Abstract:
Providing improved card art for display comprises receiving, by one or more computing devices, an image of a card and performing an image recognition algorithm on the image. The computing device identifies images represented on the card image and comparing the identified images to an image database. The computing device determines a standard card art image associated with the identified image based at least in part on the comparison and associates the standard card art image with an account of a user, the account being associated with the card in the image. The computing device displays the standard card art as a representation of the account.
Abstract:
Comparing extracted card data from a continuous scan comprises receiving, by one or more computing devices, a digital scan of a card; obtaining a plurality of images of the card from the digital scan of the physical card; performing an optical character recognition algorithm on each of the plurality of images; comparing results of the application of the optical character recognition algorithm for each of the plurality of images; determining if a configured threshold of the results for each of the plurality of images match each other; and verifying the results when the results for each of the plurality of images match each other. Threshold confidence level for the extracted card data can be employed to determine the accuracy of the extraction. Data is further extracted from blended images and three-dimensional models of the card. Embossed text and holograms in the images may be used to prevent fraud.
Abstract:
Embodiments herein provide computer-implemented techniques for allowing a user computing device to extract financial card information using optical character recognition (“OCR”). Extracting financial card information may be improved by applying various classifiers and other transformations to the image data. For example, applying a linear classifier to the image to determine digit locations before applying the OCR algorithm allows the user computing device to use less processing capacity to extract accurate card data. The OCR application may train a classifier to use the wear patterns of a card to improve OCR algorithm performance. The OCR application may apply a linear classifier and then a nonlinear classifier to improve the performance and the accuracy of the OCR algorithm. The OCR application uses the known digit patterns used by typical credit and debit cards to improve the accuracy of the OCR algorithm.