Abstract:
Provided herein are osmotic desalination methods and associated systems. According to certain embodiments, multiple osmotic membranes may be used to perform a series of osmosis steps, such that an output stream having a relatively high water purity—compared to a water purity of an aqueous feed stream—is produced. In some embodiments, multiple draw streams can be used to produce aqueous product streams having sequentially higher purities of water. Certain embodiments are related to osmotic desalination systems and methods in which forward osmosis is used to produce a first product stream having a relatively high water purity relative to an aqueous feed stream, and reverse osmosis is used to perform a second step (and/or additional steps) on the first product stream. In some embodiments, multiple reverse osmosis steps can be used in series to perform a net desalination process.
Abstract:
Systems and methods related to desalination systems are described herein. According to some embodiments, the desalination systems are transiently operated and/or configured to facilitate transient operation. In some embodiments, a liquid stream comprising water and at least one dissolved salt is circulated through a fluidic circuit comprising a desalination system. In some embodiments, a portion of the desalination system (e.g., a humidifier) is configured to remove at least a portion of the water from the liquid stream to produce a concentrated brine stream enriched in the dissolved salt. In certain cases, the concentrated brine stream is recirculated through the fluidic circuit until the concentrated brine stream reaches a relatively high density (e.g., at least about 10 pounds per gallon) and/or a relatively high salinity (e.g., a total dissolved salt concentration of at least about 25 wt %). In certain embodiments, additional salt is added to the concentrated brine stream to produce an ultra-high-density brine stream (e.g., a brine stream having a density of at least about 11.7 pounds per gallon). Some aspects relate to a system that is configured to promote energy efficiency by recovering heat from the recirculated concentrated brine stream upon discharge from the fluidic circuit.
Abstract:
Embodiments described herein generally relate to humidification-dehumidification desalination systems, including apparatuses that include a vessel comprising a humidification region (e.g., a bubble column humidification region) and a dehumidification region (e.g., a bubble column dehumidification region), mobile humidification-dehumidification (HDH) desalination systems (e.g., systems having a relatively low height and/or a relatively small footprint), and associated systems and methods. Certain embodiments generally relate to methods of operating, controlling, and/or cleaning desalination systems comprising a plurality of desalination units (e.g., HDH desalination units).
Abstract:
A counter-flow simultaneous heat and mass exchange device is operated by directing flows of two fluids into a heat and mass exchange device at initial mass flow rates where ideal changes in total enthalpy rates of the two fluids are unequal. At least one of the following state variables in the fluids is measured: temperature, pressure and concentration, which together define the thermodynamic state of the two fluid streams at the points of entry to and exit from the device. The flow rates of the fluids at the points of entry and/or exit to/from the device are measured; and the mass flow rate of at least one of the two fluids is changed such that the ideal change in total enthalpy rates of the two fluids through the device are brought closer to being equal.
Abstract:
Selective scaling in water treatment systems in which desalination is performed is generally described. According to certain embodiments, the location of the formation of solid scale within a water treatment system is controlled by adjusting one or more system parameters, such as the temperature and/or flow velocity of a saline stream within the water treatment system.
Abstract:
Temperature-matching of an injected influent stream with a location along a humidifier feed stream flow path is generally described. According to embodiments, an influent stream can be injected into and combined with a feed stream of a humidifier at a location on the humidifier feed stream flow path at which the temperature of the feed stream most closely matches the temperature of hot influent stream.
Abstract:
Provided herein are osmotic desalination methods and associated systems. According to certain embodiments, multiple osmotic membranes may be used to perform a series of osmosis steps, such that an output stream having a relatively high water purity—compared to a water purity of an aqueous feed stream—is produced. In some embodiments, multiple draw streams can be NI used to produce aqueous product streams having sequentially higher purities of water. Certain embodiments are related to osmotic desalination systems and methods in which forward osmosis is used to produce a first product stream having a relatively high water purity relative to an aqueous feed stream, and reverse osmosis is used to perform a second step (and/or additional steps) on the first product stream. In some embodiments, multiple reverse osmosis steps can be used in series to perform a net desalination process.
Abstract:
Disclosed herein are systems and methods in which multivalent ions are selectively retained in an aqueous stream. According to certain embodiments, multiple separations may be used to process an aqueous feed stream containing solubilized monovalent ions and solubilized multivalent ions to produce a stream enriched in the solubilized multivalent ions. The separations may be arranged, according to certain embodiments, to enhance the overall separation process such that the product stream contains—relative to the initial aqueous feed stream—a high amount of solubilized multivalent ions, a high amount of water from the aqueous feed stream, and/or a high ratio of solubilized multivalent ions to solubilized monovalent ions.
Abstract:
Disclosed herein are systems and methods in which ion-selective separation and multi-stage osmotic separation is used to produce multivalent-ion-rich process streams. According to certain embodiments, multiple separations may be used to process an aqueous feed stream containing solubilized monovalent ions and solubilized multivalent ions to produce a stream enriched in the multivalent ions. The separations may be arranged, according to certain embodiments, to enhance the overall separation process such that the product stream contains—relative to the initial aqueous feed stream—a high amount of multivalent ions, a high amount of water from the aqueous feed stream, and/or a high ratio of multivalent ions to monovalent ions.
Abstract:
Embodiments described herein generally relate to apparatuses that include a vessel comprising a humidification region (e.g., a bubble column humidification region) and a dehumidification region (e.g., a bubble column dehumidification region), and associated systems and methods. In certain embodiments, the apparatuses are configured to include various internal features, such as vapor distribution regions and/or liquid flow control weirs and/or baffles. In some cases, the apparatuses are used in water purification systems, such as desalination systems. The water purification systems may comprise additional devices external to the apparatuses, such as one or more heat exchangers, one or more heating devices, and/or one or more cooling devices.