Abstract:
The present disclosure is related to hybrid desalination systems and associated methods. The hybrid desalination system can comprise a first desalination unit comprising a reverse osmosis unit and a second desalination unit fluidically connected to the first desalination unit, wherein the second desalination unit comprises a humidification-dehumidification desalination apparatus. The present disclosure is also related to systems and methods for the formation of solid salts using a humidifier. According to certain embodiments, the flow velocity of a gas in the humidifier can be relatively high during the formation of the solid salt. In some embodiments, the humidifier comprises a multi-stage bubble column humidifier.
Abstract:
Embodiments described herein generally relate to humidification-dehumidification desalination systems, including apparatuses that include a vessel comprising a humidification region (e.g., a bubble column humidification region) and a dehumidification region (e.g., a bubble column dehumidification region), mobile humidification-dehumidification (HDH) desalination systems (e.g., systems having a relatively low height and/or a relatively small footprint), and associated systems and methods. Certain embodiments generally relate to methods of operating, controlling, and/or cleaning desalination systems comprising a plurality of desalination units (e.g., HDH desalination units).
Abstract:
Systems and methods related to desalination systems are described herein. According to some embodiments, the desalination systems are hybrid systems comprising one or more first desalination units and one or more second desalination units. In some embodiments, the one or more second desalination units, which may form a fluidic circuit that is located downstream from the one or more first desalination units, may be configured to desalinate higher salinity liquid streams than the one or more first desalination units. In certain embodiments, the one or more first desalination units are operated under steady-state conditions and/or configured to operate under steady-state conditions. In certain embodiments, the one or more second desalination units are transiently operated and/or configured to facilitate transient operation. In some embodiments, a liquid stream comprising water and at least one dissolved salt is flowed through the one or more first desalination units, which are configured to remove at least a portion of the water from the liquid stream to form a first concentrated brine stream enriched in the dissolved salt. In some embodiments, at least a portion of the first concentrated brine stream is fed to a fluidic circuit comprising the one or more second desalination units. In some embodiments, the one or more second desalination units are configured to remove at least a portion of the water from the first concentrated brine stream to produce a second concentrated brine stream further enriched in the dissolved salt. In certain cases, the second concentrated brine stream is recirculated through at least a portion of the fluidic circuit until the second concentrated brine stream reaches a relatively high density (e.g., at least about 10 pounds per gallon) and/or a relatively high salinity (e.g., a total dissolved salt concentration of at least about 25 wt %).
Abstract:
Water treatment systems and associated methods are generally described. Certain embodiments of the water treatment systems and methods described herein may be used to treat water comprising one or more contaminants (e.g., oil, grease, suspended solids, scale-forming ions, volatile organic material) to remove at least a portion of the one or more contaminants. In some embodiments, at least a portion of the treated water may be used directly in certain applications (e.g., oil and/or gas extraction processes). In some embodiments, at least a portion of the treated water may undergo desalination to produce substantially pure water and/or concentrated brine.
Abstract:
Embodiments described herein generally relate to humidification-dehumidification desalination systems, including apparatuses that include a vessel comprising a humidification region (e.g., a bubble column humidification region) and a dehumidification region (e.g., a bubble column dehumidification region), mobile humidification-dehumidification (HDH) desalination systems (e.g., systems having a relatively low height and/or a relatively small footprint), and associated systems and methods. Certain embodiments generally relate to methods of operating, controlling, and/or cleaning desalination systems comprising a plurality of desalination units (e.g., HDH desalination units).
Abstract:
Systems and methods related to desalination systems are described herein. According to some embodiments, the desalination systems are transiently operated and/or configured to facilitate transient operation. In some embodiments, a liquid stream comprising water and at least one dissolved salt is circulated through a fluidic circuit comprising a desalination system. In some embodiments, a portion of the desalination system (e.g., a humidifier) is configured to remove at least a portion of the water from the liquid stream to produce a concentrated brine stream enriched in the dissolved salt. In certain cases, the concentrated brine stream is recirculated through the fluidic circuit until the concentrated brine stream reaches a relatively high density (e.g., at least about 10 pounds per gallon) and/or a relatively high salinity (e.g., a total dissolved salt concentration of at least about 25 wt %). In certain embodiments, additional salt is added to the concentrated brine stream to produce an ultra-high-density brine stream (e.g., a brine stream having a density of at least about 11.7 pounds per gallon). Some aspects relate to a system that is configured to promote energy efficiency by recovering heat from the recirculated concentrated brine stream upon discharge from the fluidic circuit.
Abstract:
A counter-flow simultaneous heat and mass exchange device is operated by directing flows of two fluids into a heat and mass exchange device at initial mass flow rates where ideal changes in total enthalpy rates of the two fluids are unequal. At least one of the following state variables in the fluids is measured: temperature, pressure and concentration, which together define the thermodynamic state of the two fluid streams at the points of entry to and exit from the device. The flow rates of the fluids at the points of entry and/or exit to/from the device are measured; and the mass flow rate of at least one of the two fluids is changed such that the ideal change in total enthalpy rates of the two fluids through the device are brought closer to being equal.
Abstract:
Condensing apparatuses and their use in various heat and mass exchange systems are generally described. The condensing apparatuses, such as bubble column condensers, may employ a heat exchanger positioned external to the condensing vessel to remove heat from a bubble column condenser outlet stream to produce a heat exchanger outlet stream. In certain cases, the condensing apparatus may also include a cooling device positioned external to the vessel configured and positioned to remove heat from the heat exchanger outlet stream to produce a cooling device outlet stream. The condensing apparatus may be configured to include various internal features, such as a vapor distribution region and/or a plurality of liquid flow control weirs and/or chambers within the apparatus having an aspect ratio of at least 1.5. A condensing apparatus may be coupled with a humidifier to form part of a desalination system, in certain cases.
Abstract:
Water treatment systems and associated methods are generally described. Certain embodiments of the water treatment systems and methods described herein may be used to treat water comprising one or more contaminants (e.g., oil, grease, suspended solids, scale-forming ions, volatile organic material) to remove at least a portion of the one or more contaminants. In some embodiments, at least a portion of the treated water may be used directly in certain applications (e.g., oil and/or gas extraction processes). In some embodiments, at least a portion of the treated water may undergo desalination to produce substantially pure water and/or concentrated brine.