Abstract:
The present disclosure is related to hybrid desalination systems and associated methods. The hybrid desalination system can comprise a first desalination unit comprising a reverse osmosis unit and a second desalination unit fluidically connected to the first desalination unit, wherein the second desalination unit comprises a humidification-dehumidification desalination apparatus. The present disclosure is also related to systems and methods for the formation of solid salts using a humidifier. According to certain embodiments, the flow velocity of a gas in the humidifier can be relatively high during the formation of the solid salt. In some embodiments, the humidifier comprises a multi-stage bubble column humidifier.
Abstract:
Liquid solution concentration systems, and related methods, are generally described. In some embodiments, the system is an osmotic system comprising a plurality of osmotic modules. For example, the osmotic system can comprise a feed osmotic module configured to produce an osmotic module retentate outlet stream having a higher concentration of solute than the retentate inlet stream transported to the feed osmotic module. The osmotic system can also comprise an isolation osmotic module fluidically connected to the feed osmotic module. The osmotic system can also optionally comprise a purification osmotic module fluidically connected to the feed osmotic module and/or the isolation osmotic module. Certain embodiments are related to altering the degree to which the feed osmotic module retentate outlet stream is recycled back to the retentate-side inlet of the feed osmotic module during operation. Additional embodiments are related to the manner in which the retentate-side effluent from the isolation osmotic module is distributed among the system modules during operation.
Abstract:
Embodiments described herein generally relate to humidification-dehumidification desalination systems, including apparatuses that include a vessel comprising a humidification region (e.g., a bubble column humidification region) and a dehumidification region (e.g., a bubble column dehumidification region), mobile humidification-dehumidification (HDH) desalination systems (e.g., systems having a relatively low height and/or a relatively small footprint), and associated systems and methods. Certain embodiments generally relate to methods of operating, controlling, and/or cleaning desalination systems comprising a plurality of desalination units (e.g., HDH desalination units).
Abstract:
Systems and methods related to desalination systems are described herein. According to some embodiments, the desalination systems are hybrid systems comprising one or more first desalination units and one or more second desalination units. In some embodiments, the one or more second desalination units, which may form a fluidic circuit that is located downstream from the one or more first desalination units, may be configured to desalinate higher salinity liquid streams than the one or more first desalination units. In certain embodiments, the one or more first desalination units are operated under steady-state conditions and/or configured to operate under steady-state conditions. In certain embodiments, the one or more second desalination units are transiently operated and/or configured to facilitate transient operation. In some embodiments, a liquid stream comprising water and at least one dissolved salt is flowed through the one or more first desalination units, which are configured to remove at least a portion of the water from the liquid stream to form a first concentrated brine stream enriched in the dissolved salt. In some embodiments, at least a portion of the first concentrated brine stream is fed to a fluidic circuit comprising the one or more second desalination units. In some embodiments, the one or more second desalination units are configured to remove at least a portion of the water from the first concentrated brine stream to produce a second concentrated brine stream further enriched in the dissolved salt. In certain cases, the second concentrated brine stream is recirculated through at least a portion of the fluidic circuit until the second concentrated brine stream reaches a relatively high density (e.g., at least about 10 pounds per gallon) and/or a relatively high salinity (e.g., a total dissolved salt concentration of at least about 25 wt %).
Abstract:
Water treatment systems and associated methods are generally described. Certain embodiments of the water treatment systems and methods described herein may be used to treat water comprising one or more contaminants (e.g., oil, grease, suspended solids, scale-forming ions, volatile organic material) to remove at least a portion of the one or more contaminants. In some embodiments, at least a portion of the treated water may be used directly in certain applications (e.g., oil and/or gas extraction processes). In some embodiments, at least a portion of the treated water may undergo desalination to produce substantially pure water and/or concentrated brine.
Abstract:
Disclosed herein are systems and methods in which an aqueous stream comprising solubilized monovalent ions and solubilized multivalent ions is processed such that multivalent ions are selectively retained and monovalent ions are selectively removed. According to certain embodiments, an aqueous feed stream is transported through an ion-selective separator to produce a multivalent-ion-enriched stream and a monovalent-ion-enriched stream. The monovalent-ion-enriched stream may be transported through a desalination apparatus to produce a substantially pure water stream and a concentrated aqueous stream. In some embodiments, at least a portion of the multivalent-ion-enriched stream produced by the ion-selective separator is combined with at least a portion of the substantially pure water stream produced by the desalination apparatus to produce a combined product stream containing a relatively large percentage of the solubilized multivalent ions from the aqueous feed stream and a relatively small percentage of the solubilized monovalent ions from the aqueous feed stream.
Abstract:
Embodiments described herein generally relate to humidification-dehumidification desalination systems, including apparatuses that include a vessel comprising a humidification region (e.g., a bubble column humidification region) and a dehumidification region (e.g., a bubble column dehumidification region), mobile humidification-dehumidification (HDH) desalination systems (e.g., systems having a relatively low height and/or a relatively small footprint), and associated systems and methods. Certain embodiments generally relate to methods of operating, controlling, and/or cleaning desalination systems comprising a plurality of desalination units (e.g., HDH desalination units).
Abstract:
Systems and methods related to desalination systems are described herein. According to some embodiments, the desalination systems are transiently operated and/or configured to facilitate transient operation. In some embodiments, a liquid stream comprising water and at least one dissolved salt is circulated through a fluidic circuit comprising a desalination system. In some embodiments, a portion of the desalination system (e.g., a humidifier) is configured to remove at least a portion of the water from the liquid stream to produce a concentrated brine stream enriched in the dissolved salt. In certain cases, the concentrated brine stream is recirculated through the fluidic circuit until the concentrated brine stream reaches a relatively high density (e.g., at least about 10 pounds per gallon) and/or a relatively high salinity (e.g., a total dissolved salt concentration of at least about 25 wt %). In certain embodiments, additional salt is added to the concentrated brine stream to produce an ultra-high-density brine stream (e.g., a brine stream having a density of at least about 11.7 pounds per gallon). Some aspects relate to a system that is configured to promote energy efficiency by recovering heat from the recirculated concentrated brine stream upon discharge from the fluidic circuit.
Abstract:
A counter-flow simultaneous heat and mass exchange device is operated by directing flows of two fluids into a heat and mass exchange device at initial mass flow rates where ideal changes in total enthalpy rates of the two fluids are unequal. At least one of the following state variables in the fluids is measured: temperature, pressure and concentration, which together define the thermodynamic state of the two fluid streams at the points of entry to and exit from the device. The flow rates of the fluids at the points of entry and/or exit to/from the device are measured; and the mass flow rate of at least one of the two fluids is changed such that the ideal change in total enthalpy rates of the two fluids through the device are brought closer to being equal.