Abstract:
Embodiments of the present invention provide a method, an apparatus, and a system for transmitting data in the Ethernet, and relate to the field of Ethernet communications, so as to reduce the complexity of data processing while achieving transmission of high-rate data. The method includes: receiving to-be-transmitted data; determining a first integral number according to a data amount of the received to-be-transmitted data and a transmission bandwidth of an electrophysical sub-channel; distributing the to-be-transmitted data to a first integral number of electrophysical sub-channels; performing, by the first integral number of electrophysical sub-channels, coding and scrambling processing on the to-be-transmitted data; and sending after processing, by a second integral number of photophysical sub-channels, data from the first integral number of electrophysical sub-channels.
Abstract:
Embodiments of the present invention provide a method and an apparatus for transmitting and receiving a client signal in an optical transport network. In the transmission method, a received client signal is mapped into a variable-rate container OTU-N, wherein a rate of the OTU-N is N times as high as a preset reference rate; and then, the variable-rate container OTU-N is split into N optical sub-channel transport units OTUsubs by column, where a rate of each OTUsub equals to the reference rate; next, the N optical sub-channel transport units OTUsubs are modulated onto one or more optical carriers; at last, the one or more optical carriers is transmitted through a fiber.
Abstract:
The embodiments of the present invention disclose methods and apparatuses for mapping processing and de-mapping processing in an optical transport network. a Low Order Optical Channel Data Unit (LO ODU) signal is mapped into a payload area of an Optical Channel Data Tributary (ODTU) signal in units of M bytes. M is equal to the number of time slots of a High Order Optical Channel Payload Unit (HO OPU) that are to be occupied by the ODTU signal, and M is an integer larger than 1. Overhead information is encapsulated to an overhead area of the ODTU signal. Thereafter, the ODTU signal is multiplexed into the HO OPU. In this way, an efficient and universal mode for mapping the LO ODU to the HO OPU is provided.
Abstract:
The present invention provides a method, which including: determining, by a first node, an adjustment requirement for a line interface rate; and according to the adjustment requirement for the line interface rate, adjusting, by the first node, a transport bandwidth of an optical channel (OCh) link, adjusting the number of optical channel transport lanes (OTLs) in an optical channel transport unit (OTUCn) link, and adjusting the number of optical channel data lanes (ODLs) in an optical channel data unit (ODUCn) link, where the OTL is in one-to-one correspondence with the ODL. In embodiments of the present invention, according to an adjustment requirement for a line interface rate, a transport bandwidth of an OCh link is adjusted, the number of OTLs in an OTUCn link is adjusted, and the number of ODLs in an ODUCn link is adjusted, so that the line interface rate can be dynamically adjusted.
Abstract:
An account login method and apparatus presented. A set top box (STB) and a mobile terminal access a same wireless network. The STB obtains a terminal identifier of the mobile terminal using the wireless network; the STB searches, according to the terminal identifier, a relationship table for a service account and a password that are corresponding to the terminal identifier, where the relationship table includes a correspondence between a terminal identifier and each of a service account and a password; and if the STB finds the service account and the password that are corresponding to the terminal identifier, the STB logs in to a server using the service account and the password that are corresponding to the terminal identifier.
Abstract:
The present invention discloses a physical cell identifier configuration method, a logic root sequence index configuration method, and a base station, so as to decrease a false random access alarm.
Abstract:
The present invention provides a base station antenna, including power dividers, network calibration modules, and connectors. The base station antenna further includes at least two phase shifters. At least one phase shifter is integrated with a combiner, the connectors are connected to the network calibration modules, and the network calibration modules are connected to the phase shifters. The one phase shifter integrated with the combiner is connected to the power divider, and at least one output port of the at least one other phase shifter is connected to the phase shifter integrated with the combiner. The base station antenna has an integrated design of phase shifters and combiners, which allows cables in different bands to be shared, reduces a quantity of used cables, is easy to implement in an actual layout and production, facilitates the layout and heat dissipation on the whole, satisfies user requirements, and reduces costs.
Abstract:
Embodiments of the present invention disclose a method for generic mapping procedure (GMP) mapping, which includes: first the information about a adjusted time slot to be occupied by a second GMP block container is carried in the GMP overhead of a first GMP block container; then, the size of the second GMP block container is adjusted in accordance with the inforamtion; eventually, a client signal is mapped into the adjusted second GMP block container adopting a GMP scheme. This GMP mapping method, when working with a corresponding demapping method, provides lossless mapping and demapping of client signals during the process of bandwidth adjusting.
Abstract:
Embodiments of the present invention provide a method and an apparatus for transmitting and receiving a client signal in an optical transport network. In the transmission method, a received client signal is mapped into a variable-rate container OTU-N, wherein a rate of the OTU-N is N times as high as a preset reference rate; and then, the variable-rate container OTU-N is split into N optical sub-channel transport units OTUsubs by column, where a rate of each OTUsub equals to the reference rate; next, the N optical sub-channel transport units OTUsubs are modulated onto one or more optical carriers; at last, the one or more optical carriers is transmitted through a fiber.
Abstract:
Embodiments of this application provide a service data processing method. The method includes: receiving service data, performing encapsulation, rate adaptation, and timeslot multiplexing on the service data by code block to obtain an intermediate frame, mapping the intermediate frame to an OTN frame, and sending the OTN frame. A size of the code block is a plurality of bytes, and the code block includes information indicating a code block type. If the code block is an overhead code block or a rate adaptation code block, the code block further includes information indicating a timeslot multiplexing layer at which the code block is located.