摘要:
The invention provides a lighting unit (100) comprising a housing (120) including a light source (110). The light source (110) is configured to provide light source light (111) through a light exit part (121) of the housing (120). The lighting unit (100) further comprises a light interception part (130) configured to intercept part of the light source light (111) as intercepted light source light (112), and a luminescent material (140) configured to convert at least part of the intercepted light source light (112) into luminescent material light (141). The housing (120) further comprises a light emitting part (150), configured to allow the luminescent material light (141) escape from the housing (120).
摘要:
A wavelength converting element (101, 102, 103, 110) comprising a polymeric carrier material comprising a first wavelength converting material adapted to convert light of a first wavelength to light of a second wavelength, wherein the oxygen diffusion coefficient (D) of the polymeric carrier material is 8×10−13 cm2/s or less at 25° C. A prolonged lifetime of the wavelength converting material is achieved by selecting a polymeric carrier material with an oxygen diffusion coefficient (D) at 8×10−13 cm2/s or less at 25° C.
摘要翻译:包括聚合物载体材料的波长转换元件(101,102,103,110),其包括适于将第一波长的光转换成第二波长的光的第一波长转换材料,其中聚合物的氧扩散系数(D) 载体材料在25℃下为8×10-13 cm 2 / s以下。通过选择氧扩散系数(D)为8×10-13 cm 2 / cm 2的聚合物载体材料,可以延长波长转换材料的寿命, 小于或等于25℃
摘要:
A device (230, 1330, 1430) includes: a first electrode (232); an electro-statically movable second electrode (234, 1734, 1834); and an electrically insulating layer (233) disposed between the first and second electrodes. The electro-statically movable second electrode is configured to have a first geometric configuration in response to a first electrical potential between the first and second electrodes, and is further configured to have a second geometric configuration in response to a second electrical potential between the first and second electrodes. The device is configured to receive a time-varying voltage and in response thereto the electrostatically movable second electrode is configured to repeatedly transition between the first geometric configuration and the second geometric configuration to influence a flow of a fluid (235) for cooling at least one heat-generating element (310).
摘要:
The invention relates to a lighting device (1), an array of such lighting devices and an optical projection device comprising such lighting device. The lighting device, comprises at least one laser source (4) for generating laser radiation, wherein the laser source is optically coupled to an optical element (7, 8, 9) comprising at least one luminescent material, suitable for emitting luminescent radiation upon laser excitation by the laser radiation, wherein the optical element is provided with at least one reflector for directing the radiation from the luminescent dot through an emission window of the optical element. The lighting device is particularly useful in a projector and other lighting applications.
摘要:
A system and camera wherein the camera comprises in the light path a diffuser (4). The system or camera comprises a means (6) to modulate the diffusing properties of the diffuser (4) on an image projected by the lens on the sensor during exposure of the image. To the captured blurred image (10) an inverse point spread function is applied to deconvolute (24) the blurred image to a sharper image. Motion invariant image can so be achieved.
摘要:
A luminescent product 100, a lamp and a light source are provided for converting light of a first color into light of a second color. The luminescent product 100 comprises a matrix polymer 108 and another material 106. The matrix polymer 108 comprises a luminescent material which converts light of a first color into light of a second color. The another material 106 is light transmitting. The luminescent product 100 is at least partially light transmitting and the matrix polymer has a three dimensional structure which has multiple surfaces being an interface between the matrix polymer and the another material to allow, in use, a light beam 104, which impinges on a side 102 of the luminescent product 100, to pass at least four times an interface between the matrix polymer 108 and the another material 106 before at least a part of the light beam 104 leaves the luminescent product 100 at another side 110 of the luminescent product 100.
摘要:
A lighting device 100, a lamp and a luminaire is provided. The light device 100 emits a first color distribution predominantly in a first direction and a second color distribution predominantly in a second direction. The lighting device comprises a light exit window, a light source 118, a light distributing layer 108, and a luminescent material. Light 104, 106 is emitted into the ambient of the lighting device through the light exit window. The light exit window has a first part 110 for an escape of light of the first color distribution and a second part 102 for an escape of light of the second color distribution. The second part 102 is different from the first part 110. The light source emits light of a predefined color distribution. The predefined color distribution comprises light of a first color 106. The light distributing layer partly reflects or backscatters impinging light and partly transmits impinging light. The light distributing layer 108 is arranged in between the light source 118 and the second part 102 of the light exit window. The light distributing layer 108 is not fully transparent and has an edge near the light exit window for separating the first part 110 and the second part 102. The luminescent material converts light of the first color 106 to light of a second color 104. The luminescent material is arranged in the light distributing layer 108, is arranged in between the light distributing layer 108 and the second part 102 of the light exit window, or is arranged at the first part 110 of the light exit window or the second part 102 of the light exit window.
摘要:
The invention provides a lighting device comprising (a) a transparent waveguide plate (200), with first surface (201), opposite second surface (202), and edge surface between the first surface and the second surface, (b) a light source (300) for providing light source light towards a light incoupling surface of the transparent waveguide plate, configured to provide at least part of the light source light in a direction perpendicular to one or more of the first surface and the second surface. The transparent waveguide plate further comprises a luminescent material, (400) configured to convert at least part of the light source light into luminescent material emission, and light outcoupling means (220) for coupling luminescent material emission and optionally light source light out of the transparent waveguide plate as lighting device light in a direction away from one or more of the first surface and the second surface.
摘要:
The invention provides a light-emitting arrangement (100) comprising a light source (105) adapted to emit light of a first wavelength, and a wavelength converting member (106) arranged to receive light of said first wavelength and adapted to convert at least part of the light of said first wavelength to light of a second wavelength, said wavelength converting member comprising i) a carrier polymeric material comprising a polyester backbone comprising an aromatic moiety, and ii) at least one wavelength converting material of a specified general formula. The perylene derived compounds have been found to have excellent stability when incorporated into said matrix material.
摘要:
The present invention relates to an organic light emitting device (OLED) (100;200;400;800;900;1000;1100;1200) comprising a first substrate layer (101;201;401;501;701;1004;1104;1205) and a second substrate layer (102;202; 402;502;704; 1005;1105;1206). The device (100;200;400;800;900;1000;1100;1200) further comprises at least a first OLED assembly (103;403;503;901;1001;1101;1202) and a second OLED assembly (104;404;504;902;1002;1102;1203) arranged between the first and the second substrate layers. Each of the first and second OLED assemblies comprises a first electrically conductive layer (105;505;703), a second electrically conductive layer (106;506;706) and an organic light emitting layer (107;507;507′;707) arranged between the first and the second electrically conductive layer. The organic light emitting device (100;200;400;800;900;1000;1100;1200) of the invention allows for an increased light intensity and is suitable for large area applications.