Abstract:
A method of handling radar signals of a radar system having a plurality of antennas is provided. The method may include generating a plurality of time-based radar signals based on a radar signal received by an associated antenna of the plurality of antennas, and transforming each time-based radar signal of the time-based radar signals into radar signals that each comprise a plurality of pairs of a frequency-based-value and an associated intensity value. The method includes storing the frequency-based-values and the intensity values of one frequency-based radar signal corresponding to one time-based radar signal of one antenna of the plurality of antennas; and storing each intensity value of the plurality of intensity values of another of the plurality of frequency-based radar signals based on a corresponding intensity value of the one frequency-based radar signal, wherein a stored representation of the intensity value of the other of the plurality of frequency-based radar signals has fewer bits than the corresponding stored intensity value.
Abstract:
A device for accessing memory configured to store an image data cube, wherein the memory has memory banks, and each memory bank has memory rows and memory columns. The device includes an input configured to receive a memory access request having a logical start address, which specifies a logical bank, a logical row, and a logical column, and a burst size; and a memory address generator configured to generate physical memory addresses based on the logical start address and the burst size, wherein any consecutive logical start addresses mapped to different memory rows are mapped to different memory banks.
Abstract:
A method for processing radar signals, wherein said radar signals comprise digitized data received by at least one radar antenna, the method comprising (i) determining FFT results based on the digitized data received; and (ii) storing a first group of the FFT results, wherein the first group of FFT results comprises at least two portions, wherein a first portion of FFT results is stored with a first accuracy and a second portion of FFT results is stored with a second accuracy.
Abstract:
A device for processing radar signals is suggested, the device comprising: (i) a memory, which is arranged to store radar data and (ii) an accessor comprising a DMA engine, wherein the accessor is arranged to access data of the memory via the DMA engine, to filter the accessed data, and to forward the filtered data.
Abstract:
Techniques for radar detection based on preacquisition ramps are discussed. One example system comprises transmitter circuitry, receiver circuitry, and one or more processors. The transmitter circuitry can transmit preacquisition ramps and acquisition ramps. The receiver circuitry can receive preacquisition signals and acquisition signals based on interactions between the environment and the preacquisition ramps and acquisition ramps, respectively. The one or more processors can perform preprocessing based on the preacquisition signals to obtain interim results based on one or more of the environment or the system; generate a range Doppler map based at least in part on the acquisition signals; and evaluate the range Doppler map based at least in part on the interim results.
Abstract:
A modulator operable to control an oscillator is described. The modulator can include a memory that stores oscillator control values and a bit streaming block. The bit streaming block can generate a bit stream based on the oscillator control values and transmit the bit stream to the oscillator to control an oscillation frequency of the oscillator. The modulator can also include a bit streaming loader (BSL). The BSL can receive one or more of the oscillator control values from the memory, generate one or more corresponding bit values based on the one or more of the oscillator control values, and provide the one or more bit values to the bit streaming block. The bit streaming block can then generate the bit stream based the one or more bit values generated by the BSL.
Abstract:
A device for radar applications includes a computing engine, a radar acquisition unit connected to the computing engine, a timer unit connected to the computing engine, a cascade input port, and a cascade output port. The cascade input port is configured to convey an input signal to the computing engine and the cascade output port is configured to convey an output signal from the computing engine. Further, an according system, a radar system, a vehicle with such radar system and a method are provided.
Abstract:
An error signal handling unit includes an error handler configured to receive an error signal indicating an error condition. The error handler is further configured to receive a recovery signal indicating a mitigation of the error condition or indicating that a mitigation of the error condition is possible. Furthermore, the error handler is further configured to output an error condition signal based on the error signal in response to a reception of the error signal if within a given delay time from the reception of the error signal, the error handler does not receive the recovery signal, and otherwise omit outputting the error condition signal.