Abstract:
A telepresence robot may include a drive system, a control system, an imaging system, and a mapping module. The mapping module may access a map of an area and tags associated with the area. In various embodiments, each tag may include tag coordinates and tag information, which may include a tag annotation. A tag identification system may identify tags within a predetermined range of the current position and the control system may execute an action based on an identified tag whose tag information comprises a telepresence robot action modifier. The telepresence robot may rotate an upper portion independent from a lower portion. A remote terminal may allow an operator to control the telepresence robot using any combination of control methods, including by selecting a destination in a live video feed, by selecting a destination on a map, or by using a joystick or other peripheral device.
Abstract:
A robotic system that includes a mobile robot linked to a plurality of remote stations. One of the remote stations includes an arbitrator that controls access to the robot. Each remote station may be assigned a priority that is used by the arbitrator to determine which station has access to the robot. The arbitrator may include notification and call back mechanisms for sending messages relating to an access request and a granting of access for a remote station.
Abstract:
A telepresence robot may include a drive system, a control system, an imaging system, and a mapping module. The mapping module may access a plan view map of an area and tags associated with the area. In various embodiments, each tag may include tag coordinates and tag information, which may include a tag annotation. A tag identification system may identify tags within a predetermined range of the current position and the control system may execute an action based on an identified tag whose tag information comprises a telepresence robot action modifier. The telepresence robot may rotate an upper portion independent from a lower portion. A remote terminal may allow an operator to control the telepresence robot using any combination of control methods, including by selecting a destination in a live video feed, by selecting a destination on a plan view map, or by using a joystick or other peripheral device.
Abstract:
A remote control station that controls a robot through a network. The remote control station transmits a robot control command that includes information to move the robot. The remote control station monitors at least one network parameter and scales the robot control command as a function of the network parameter. For example, the remote control station can monitor network latency and scale the robot control command to slow down the robot with an increase in the latency of the network. Such an approach can reduce the amount of overshoot or overcorrection by a user driving the robot.
Abstract:
A telepresence robot may include a drive system, a control system, an imaging system, and a mapping module. The mapping module may access a plan view map of an area and tags associated with the area. In various embodiments, each tag may include tag coordinates and tag information, which may include a tag annotation. A tag identification system may identify tags within a predetermined range of the current position and the control system may execute an action based on an identified tag whose tag information comprises a telepresence robot action modifier. The telepresence robot may rotate an upper portion independent from a lower portion. A remote terminal may allow an operator to control the telepresence robot using any combination of control methods, including by selecting a destination in a live video feed, by selecting a destination on a plan view map, or by using a joystick or other peripheral device.
Abstract:
A robotic system that includes a mobile robot and a remote input device. The input device may be a joystick that is used to move a camera and a mobile platform of the robot. The system may operate in a mode where the mobile platform moves in a camera reference coordinate system. The camera reference coordinate system is fixed to a viewing image provided by the camera so that movement of the robot corresponds to a direction viewed on a screen. This prevents disorientation during movement of the robot if the camera is panned across a viewing area.
Abstract:
A robotic system that is used in a tele-presence session. For example, the system can be used by medical personnel to examine, diagnose and prescribe medical treatment in the session. The system includes a robot that has a camera and is controlled by a remote station. The system further includes a storage device that stores session content data regarding the session. The data may include a video/audio taping of the session by the robot. The session content data may also include time stamps that allow a user to determine the times that events occurred during the session. The session content data may be stored on a server that accessible by multiple users. Billing information may be automatically generated using the session content data.
Abstract:
A remote controlled robot with a head that supports a monitor and is coupled to a mobile platform. The mobile robot also includes an auxiliary camera coupled to the mobile platform by a boom. The mobile robot is controlled by a remote control station. By way of example, the robot can be remotely moved about an operating room. The auxiliary camera extends from the boom so that it provides a relatively close view of a patient or other item in the room. An assistant in the operating room may move the boom and the camera. The boom may be connected to a robot head that can be remotely moved by the remote control station.
Abstract:
The present disclosure describes various clinical workflows and other methods that utilize a telemedicine device in a healthcare network. According to various embodiments, a healthcare practitioner may utilize a remote presence interfaces (RPIs) on a remote access device (RAD), such as a portable electronic device (PED) to interface with a telemedicine device. The healthcare practitioner may directly interface with a display interface of a telemedicine device or utilize the RPI on a RAD. The present disclosure provides various clinical workflows involving a telemedicine device to view patient data during a telepresence session, perform rounds to visit multiple patients, monitor a patient, allow for remote visitations by companions, and various other clinical workflow methods.
Abstract:
The present disclosure describes various aspects of remote presence interfaces (RPIs) for use on portable electronic devices (PEDs) to interface with remote telepresence devices. An RPI may allow a user to interact with a telepresence device, view a live video feed, provide navigational instructions, and/or otherwise interact with the telepresence device. The RPI may allow a user to manually, semi-autonomously, or autonomously control the movement of the telepresence device. One or more panels associated with a video feed, patient data, calendars, date, time, telemetry data, PED data, telepresence device data, healthcare facility information, healthcare practitioner information, menu tabs, settings controls, and/or other features may be utilized via the RPI.