摘要:
A generic quality of service (QoS) model that is not dependent on network technology is used to support QoS for communication networks utilizing different network technologies. The generic QoS model may include a superset of all QoS parameters for all network technologies being supported, e.g., 3GPP and 3GPP2. An application at a device may specify QoS for a traffic flow based on the generic QoS parameters in the superset. The generic QoS parameters may be converted to QoS parameters that are specific to a serving network. The converted QoS parameters are exchanged with the serving network and are used while exchanging traffic with the serving network.
摘要:
The packets generated by each of multiple packet data applications are provided to a single Point-to-Point Protocol (PPP) stack and a single High-level Data Link Control (HDLC) framing layer to convert data packets into byte streams suitable for transmission through Radio Link Protocol (RLP) connections. Each of the resultant multiple byte streams is then provided to one of multiple RLP connections having different retransmission and delay properties. The RLP connection selected for sending data from each application is based on the grade of service most appropriate for the application. At the receiver, the data from the multiple RLP connections is provided to a single PPP stack.
摘要:
Methods and apparatus for communicating IP datagrams efficiently within communication links employing variable frame sizes bundles IP datagrams into data payloads. The number of datagrams that can fit within a current frame size is determined, a bundle header indicating that the bundle header is associated with a bundled IP datagram is generated that includes information for unpacking bundled IP datagrams. The bundle header is joined to one or more IP datagrams to form a data payload that is communicated as a frame payload without indicating in a frame header that the frame includes bundled IP datagrams. Information in the bundle header enables a receiver processor to extract the IP datagrams from the frame payload without requiring modifications to the frame header. A bundle header may precede each IP datagram, or one bundle header may include a map IP datagrams in the frame payload.
摘要:
Techniques for supporting concurrent data services with different credentials are described. A wireless communication network authenticates a user/device whenever new credentials are used. An access terminal sends first credentials via a Point-to-Point Protocol (PPP) link to a Packet Data Serving Node (PDSN) and receives an indication of successful authentication for a first data service based on the first credentials. The access terminal may receive a request for a second data service and second credentials from an internal application or a terminal device coupled to the access terminal. The access terminal then sends the second credentials via the PPP link to the PDSN while the first data service is ongoing. The access terminal receives from the PDSN an indication of successful authentication for the second data service based on the second credentials. The access terminal may send a Configure-Request packet or an Authenticate-Request packet to trigger or initiate authentication by the PDSN for the second data service.
摘要:
Methods and apparatus are presented for extending the protocol synchronization period between a PPP client and a PPP server, wherein the PPP server is located on a wireless communication device. In one aspect, the PPP server generates and sends an IPCP Configure-Nak message to the PPP client whenever the PPP client sends an IPCP Configure-Request message, wherein an arbitrary non-zero value is deliberately sent as the primary DNS address, the secondary DNS address, the primary WINS address, or the secondary WINS address is sent in the IPCP Configure-Nak message. The IP address is deliberately omitted from the IPCP Configure-Nak message.
摘要:
Using split interfaces for Internet Protocol version 6 (IPv6) and Internet Protocol version 4 (IPv4), and bridging the IPv4 interface, makes it possible to support a Tethered Device (TD) and an Access Terminal (AT) having concurrent IP connectivity. This configuration enables the support of IP Multimedia Subsystem (IMS) applications in the AT using IPv6 while concurrently supporting general Internet usage on a TD. It is also possible to bridge an IPv6 interface to the TD.
摘要:
Techniques for performing system selection based on a usage model that uses “access strings”, “profiles”, and “activation strings” are described. Access strings are defined for wireless data services and provide a highly intuitive user interface. Each access string is associated with one or more profiles. Each profile includes various parameters needed to establish a specific data call. Each profile is further associated with an activation string that contains connection information for the data call. System selection is performed in two parts. In the first part, a wireless user views access strings for available data services, selects the access string for the desired data service, and returns the selected access string. In the second part, the wireless device selects a profile for a system most suited to provide the desired data service, from among all profiles associated with the selected access string.
摘要:
A wireless network assigns a single IP address to the wireless device, which assigns this IP address over to a TE2 device coupled to the wireless device. The wireless device derives a private IP address for communication with the TE2 device. The wireless device forwards packets exchanged between the TE2 device and the wireless network using the single IP address. The wireless device exchanges packets with the TE2 device by (1) using the private IP address for outbound packets sent to the TE2 device and (2) performing either address-based routing or packet filtering on inbound packets received from the TE2 device. The wireless device exchanges packets with the wireless network by (1) using the single IP address for outbound packets sent to the wireless network and (2) performing packet filtering on inbound packets received from the wireless network.
摘要:
This disclosure is directed to techniques for selection of wireless network interfaces for data communication within an access terminal. The techniques may rely on a set of interface selection rules to identify network interfaces that are eligible to serve a particular communication application or the type of traffic forwarded on behalf of another device. In addition, each network interface may be assigned a priority. Upon identifying eligible interfaces, e.g., interfaces that satisfy all of the interface selection rules, the techniques may involve selection of the eligible interface having the highest priority. The assigned priority may be dynamically adjusted based on the connection state of the interfaces, prioritization according to changes in system latency, interface cost, and the like.
摘要:
To initiate dormancy early, a wireless device receives an IP packet from a wireless network and determines whether the received IP packet is an unsolicited IP packet. An unsolicited IP packet may be declared if the received IP packet causes the wireless device to reactivate from dormancy or is not delivered to an application or service running at the wireless device. The wireless device transitions to dormancy early if the received IP packet is deemed to be an unsolicited IP packet and no other events prevent transition to dormancy. The wireless device may use (1) a shortened value for an inactivity timer for a predetermined time duration if an unsolicited IP packet is detected and (2) a nominal value for the inactivity timer thereafter. The wireless device resets the inactivity timer whenever an IP packet is sent or received and transitions to dormancy upon expiration of the inactivity timer.