摘要:
A method and apparatus for supporting uplink Transmission Time Interval (TTI) bundling in Long Term Evolution (LTE) is provided. Described are related method and apparatus for signaling, activation/deactivation and wireless transmit/receive unit (WTRU) behavior.
摘要:
Method and apparatus are disclosed for determining a physical uplink power level for transmissions on a physical uplink channel. In one embodiment, a random access channel (RACH) uplink message is transmitted. The RACH uplink message includes a RACH message power level and/or a downlink pathloss figure. A downlink message including a power offset value is received. The physical uplink power level is set for transmissions on the physical uplink channel based on the power offset value. In another embodiment, a RACH uplink message is transmitted and a downlink message including a relative power offset value is received. The physical uplink power level for transmissions on the physical uplink channel is then set based on the relative power off set value.
摘要:
A method and apparatus of resource management for multimedia broadcast multicast services (MBMS) are disclosed. A wireless transmit/receive unit (WTRU) sends a measurement report and an MBMS reception performance report to a network. Single frequency network (SFN) area change may be made based on cell reselection information, WTRU macro-diversity MBMS reception performance, neighbor cell signal strength reported by a WTRU, interference level measured by the WTRU, a number of WTRUs in a cell, service priority, WTRU class, WTRU mobility trend, WTRU location to a cell center, WTRU MBMS reception interference level, etc. The MBMS service on/off decision and/or point-to-point (PTP) to point-to-multipoint (PTM) switching may be made based on a channel condition of a WTRU. The channel condition may be determined based on whether the WTRU is in in-sync or out-of-sync in MBMS reception, consecutive negative acknowledgements (NAKs) within a certain time window, measured pathloss from a reference channel, etc.
摘要:
A method and apparatus are disclosed relating to ciphering and de-ciphering of packet units in wireless devices during retransmission in wireless communications. The packet units are re-segmented with the ciphering done on the re-segmented packet unit or on a radio link control protocol data unit (RLC PDU) with or without segmentation. Alternatively, the re-segmentation is done on the radio link control service data unit (RLC SDU) with or without segmentation. Alternatively, the ciphering process and multiplexing of the RLC PDU is done in the medium access control (MAC) layer of a MAC PU before undergoing a hybrid automatic repeat request (HARQ) process for retransmission. Further, the ciphering process in the RLC is done on a packet data convergence protocol packet data unit (PDCP PDU).
摘要:
A wireless transmit/receive unit (WTRU) receives a mapping of access service classes (ASCs) to its assigned access class. The ASC mapping may be based on message priority and logical channel priority. ASC mapping is directly or indirectly mapped to RACH preamble burst groupings and RACH signature groupings.
摘要:
Methods and apparatus for performing efficient blind transport format (TF) detection in wireless communication systems are disclosed based on TF groups and efficient hybrid automatic repeat request (HARQ) assisted blind TF detection for retransmissions. When a receiver detects a failure for an initial transmission, a transmitter receives an HARQ negative acknowledgement (NACK) or no feedback from the receiver beyond a certain duration. The transmitter uses the same transport format combination (TFC) for a first retransmission as is used for the initial transmission for data detection, and if the first retransmission fails and after the transmitter gets the HARQ NACK or no feedback from the receiver beyond the certain duration, the transmitter uses a next more robust TFC for a second retransmission and the receiver should also to use next more robust TFC for data detection for the second retransmission from the transmitter. Alternatively, the transmitter uses the next robust TF for the first retransmission.
摘要:
A method for controlling discontinuous reception in a wireless transmit/receive unit includes defining a plurality of DRX levels, wherein each DRX level includes a respective DRX cycle length and transitioning between DRX levels based on a set of criteria. The transitioning may be triggered by implicit rules.
摘要:
A method and an apparatus are provided for initializing token buckets to a non-zero value, preserving the token buckets during a medium access control (MAC) reset or handover, resetting the token buckets based on a minimum bucket size or ratio of sizes, and transmitting a token status report.
摘要:
Method and apparatus are disclosed for determining a physical uplink power level for transmissions on a physical uplink channel. In one embodiment, a random access channel (RACH) uplink message is transmitted. The RACH uplink message includes a RACH message power level and/or a downlink pathloss figure. A downlink message including a power offset value is received. The physical uplink power level is set for transmissions on the physical uplink channel based on the power offset value. In another embodiment, a RACH uplink message is transmitted and a downlink message including a relative power offset value is received. The physical uplink power level for transmissions on the physical uplink channel is then set based on the relative power off set value.
摘要:
A method and apparatus for signaling the release of a persistent resource in long term evolution (LTE) are disclosed. An indication of the release of a downlink (DL) persistent resource is received by a wireless transmit receive unit (WTRU) from an evolved Node-B (eNB) via a physical downlink control channel (PDCCH). A positive acknowledgement (ACK) is transmitted by the WTRU which denotes that the indication has been received. The PDCCH or a medium access control (MAC) CE may be used by the eNB to signal the indication. At least one bit may be added to contents of the PDCCH to signal whether the PDCCH is for DL persistent or dynamic resource allocation. The DL persistent resource is then released and an indication that the DL persistent resource has been released is transmitted.