Abstract:
A method for delivering radiation therapy to a patient using a three-dimensional planning image for radiation therapy of the patient wherein the planning image includes a radiation therapy target. The method includes the steps of: determining desired image capture conditions for the capture of at least one two-dimensional radiographic image of the radiation therapy target using the three-dimensional planning image; detecting a position of the radiation therapy target in the at least one captured two-dimensional radiographic image; and determining a delivery of the radiation therapy in response to the radiation therapy target's detected position in the at least one captured two-dimensional radiographic image.
Abstract:
A pattern recognition method for automatic abnormal tissue detection and differentiation using contrast enhanced MRI images. The method includes the steps of acquiring a plurality of MRI breast image sets; aligning the plurality of MRI breast images with respect to spatial coordinates; differencing the plurality of MRI breast image sets with a reference MRI image set, producing a plurality of difference image sets; segmenting the plurality of difference image sets, producing a plurality of MRI breast images with segmented intensity pixels; applying dynamic system identification to the segmented intensity pixels, producing a plurality of dynamic system parameters; and classifying the plurality of system parameters augmented with other physical or non-physical factors into different classes.
Abstract:
A digital image processing method for locating faces in a digital color image includes the steps of: generating a mean grid pattern element (MGPe) image from a plurality of sample face images; generating an integral image from the digital color image; and locating faces in the color digital image by using the integral image to perform a correlation between the mean grid pattern element (MGPe) image and the digital color image at a plurality of effective resolutions by reducing the digital color image to grid pattern element images (GPes) at different effective resolutions and correlating the MGPe with the GPes.
Abstract:
A method for reconstructing computerized tomographic (CT) images of an object, including: scanning the object with a CT imaging system to acquire views that include measured projections of the object. Additionally, the method applies an iterative algorithm to minimize errors between the measured projections and reprojections of a reconstructed CT image, wherein at each iteration, projection errors become smaller causing the reconstructed CT image to become further refined.
Abstract:
A three-dimensional model of a scene is obtained from a plurality of three-dimensional panoramic images of a scene, wherein each three-dimensional panoramic image is derived from a plurality of range images captured from a distinct spatial position. Transformations are determined that align the plurality of three-dimensional panoramic images, and spatial information is integrated from the plurality of three-dimensional panoramic images to form a spatial three-dimensional model of the scene. Finally, intensity and texture information is integrated from the plurality of three-dimensional panoramic images onto the spatial three-dimensional model to form a three-dimensional model of the scene containing both spatial and intensity information.
Abstract:
A scannerless range imaging system employs a technique for embedding digital data into its image output in a manner that allows exact recovery of its associated images. The range imaging system captures (a) a plurality of phase images of reflected modulated illumination, wherein each image incorporates a phase delay term corresponding to the distance of objects in the scene from the range imaging system, together with a phase offset term unique for each image, and (b) at least one intensity image of reflected unmodulated illumination, and then generates an image bundle of associated images including the plurality of phase images and the intensity image. Meta-data is embedded into the image bundle by a) forming a digital message from the meta-data, b) converting the digital message to embedded data, and c) adding the embedded data to each phase image in the image bundle, pixel by pixel, without changing the phase term in each of the phase images, thereby allowing exact reconstruction of range information from the phase images without having to extract the embedded data.
Abstract:
A color scannerless range imaging system includes an illumination system for illuminating the scene with modulated illumination of a predetermined modulation frequency and an image capture section positioned in an optical path of the reflected illumination from the scene for capturing a plurality of images including (a) at least one range image corresponding to the reflected modulated illumination and including a phase delay corresponding to the distance of objects in the scene from the range imaging system, and (b) at least one other image of reflected unmodulated illumination corresponding to color in the scene. The image capture section includes a color filter array arranged with a first type of color filter that preferentially transmits the reflected modulated illumination and one or more other color filters that preferentially transmit the reflected unmodulated illumination, an image intensifier receiving the reflected illumination and including a modulating stage for modulating the reflected modulated illumination from the scene, thereby generating the range information, and an image responsive element for capturing an output of the image intensifier, including the range image and the other image of reflected unmodulated image light corresponding to color in the scene. The image intensifier is structured with channels that generally correspond to the color filter array such that the intensifier provides the range image from channels corresponding to the first color filter and the other image corresponding to color in the scene from channels corresponding to the other color filters.
Abstract:
A method for image capture and estimation of range information is provided which uses photographic film as the image capture mechanism. A plurality of identical images are captured on film yielding an image bundle wherein each image in the image bundle is captured with a different phase offset. Fiducial marks are placed on the photographic film between adjacent images in the image bundle. The image bundle is developed and the developed images are scanned. The images of the image bundle are then registered by aligning the fiducial marks. The distance from the image capture device to object(s) in the images of the image bundle can then be estimated using the different phase offsets for each image. The range at a pixel location is estimated by selecting the intensity of the pixel at that location of each image and performing a best fit of a sine wave of one period through the points. The phase of the resulting best fitted sine wave is then used to estimate the range to the object based upon the wave length of the illumination frequency.
Abstract:
A technique of capturing a stereoscopic panoramic photographic image of a scene, includes capturing a first 360.degree. panoramic image of a scene from a first point on a vertical axis; and capturing a second 360.degree. panoramic image of the scene from a second point on the vertical axis, the second point being displaced from the first point by a stereoscopic baseline distance.
Abstract:
A method of encoding and decoding a transaction card with a block of image data digitally representing the features of a digital portrait of an authorized transaction card user is disclosed along with apparatus for performing the method. The encoding method partitions the digital portrait of the transaction card user into feature blocks. Each feature block is compared against a library of like feature blocks to determine the best match with a pair of library feature blocks. The library's feature blocks are derived from a plurality of portraits taken from the general population. Each library feature block is represented (addressed for access) by a code-vector in a codebook. The two code-vectors corresponding to the two closest matching features blocks from the library of like feature blocks are recorded onto a transaction card along with an interstitial pointer which indicates a weight to be allocated to each of the two code-vectors to form a better match for at least one of the library feature blocks to the user's feature blocks. All of the code-vectors and the interstitial pointers corresponding to the user's feature blocks are recorded as a sequence of sub-data blocks within an image data block on the transaction card. A method and associated apparatus for reading out the image data block and recreating a representation of the portrait of the transaction card user at a financial transaction site for identification purposes are also disclosed.