Abstract:
A method for receiving Acknowledgement/Negative Acknowledgement (ACK/NACK) information at a base station in a wireless communication system. The method according to one embodiment includes transmitting a plurality of transport blocks through a plurality of downlink carriers to a user equipment. Each of the plurality of downlink carriers carries two or more transport blocks. The method according to the embodiment further includes, after transmitting the plurality of transport blocks, receiving the ACK/NACK information through one uplink carrier from the user equipment. The ACK/NACK information includes ACK/NACK bits corresponding to the plurality of transport blocks, and the ACK/NACK bits are concatenated in accordance with an index order of the downlink carriers and an index order of the two or more transport blocks associated with each of the downlink carriers.
Abstract:
An apparatus for receiving signals includes a receiver for receiving a time domain signal from a transmitter, wherein at least one first information bit is mapped, resulting in at least one first mapped symbol; at least one second information bit is mapped, resulting in at least one second mapped symbol; the at least one second mapped symbol is multiplied by at least one third information bit; and the time domain signal is generated from the at least one first mapped symbol and the at least one second mapped symbol.
Abstract:
A method and device are disclosed for transmitting uplink control signals in a wireless communication system using at least one subframe comprising two slots, each slot including a plurality of symbols, the wireless communication system configured to transmit a first uplink control signal via an assigned first physical uplink control channel resource and to transmit a second uplink control signal via an assigned second physical uplink control channel resource. The method can include generating a modulation symbol by modulating the second uplink control signal, and transmitting the modulation symbol in a subframe via a physical uplink control channel resource which is assigned for the first uplink control signal if it is determined that the first uplink control signal and the second uplink control signal are to be transmitted in the subframe.
Abstract:
A method for transmitting a signal by a transmitting side device, the method including combining a first sequence and a second sequence to generate a third sequence in a frequency domain. The second sequence is obtained by cyclic shifting the first sequence. The method further includes transforming the third sequence into a time domain signal; and transmitting the time domain signal to a receiving side device. The third sequence includes information to identify a cell and is periodically transmitted.
Abstract:
A method for transmitting, by a user equipment (UE), an aperiodic sounding reference signal (SRS) in a wireless communication system, the method including receiving, via a physical downlink control channel (PDCCH), downlink control information (DCI) for downlink scheduling. The DCI includes an SRS request for triggering transmission of the aperiodic SRS. The method further includes detecting the SRS request; and transmitting the aperiodic SRS on an uplink (UL) component carrier (CC), which is linked to a downlink (DL) CC in which a physical downlink shared channel (PDSCH) is scheduled by the DCI, among a plurality of UL CCs. If a carrier indicator field (CIF) is configured, the UL CC is indicated by the CIF.
Abstract:
The present invention relates to a method and to an apparatus for supporting carrier aggregation. More particularly, the present invention relates to a method for enabling user equipment to receive a signal from a base station in a wireless communication system which supports carrier aggregation, wherein said the method comprises the steps of: setting a first component carrier to a paused state; receiving state change information for the first component carrier via the second component carrier during the paused state of the first component carrier; and monitoring a control channel via the first component carrier if the state change information indicates a predetermined value. The present invention also relates to an apparatus for the method.
Abstract:
The present invention relates to a method for transmitting, by a base station, a downlink signal using a plurality of transmission antennas comprises the steps of: applying a precoding matrix indicated by the PMI, received from a terminal, in a codebook to a plurality of layers, and transmitting the precoded signal to the terminal through a plurality of transmission antennas. Among precoding matrices included in the codebook, a precoding matrix for even number transmission layers can be a 2×2 matrix containing four matrices (W1s), the matrix (W1) having rows of a number of transmission antennas and columns of half the number of transmission layers, the first and second columns of the first row in the 2×2 matrix being multiplied by 1, the first column of the second row being multiplied by coefficient “a” of a phase, and the first column of the second row being multiplied by “−a”.
Abstract:
A sequence generation method for allowing a reception end to effectively detect a sequence used for a specific channel of an OFDM communication system, and a signal transmission/reception method using the same are disclosed. During the sequence generation, an index is selected from among the index set having the conjugate symmetry property between indexes, and a specific part corresponding to the frequency “0” is omitted from a transmitted signal. In addition, a reception end can calculate a cross-correlation value between a received (Rx) signal and each sequence using only one cross-correlation calculation based on the conjugate symmetry property.
Abstract:
A method of transmitting a reference signal in a wireless communication system includes generating a frequency-domain reference signal by performing discrete Fourier transform (DFT) on a time-domain reference signal, generating a transmit signal by performing inverse fast Fourier transform (IFFT) on the frequency-domain reference signal and transmitting the transmit signal.
Abstract:
A method for transmitting ACK/NACK signal in a wireless communication system applied carrier aggregation is disclosed herein. More specifically, the method includes receiving multiple transmission blocks respectively through multiple downlink component carriers from a base station, determining ACK/NACK responses corresponding to each of the multiple transmission blocks by decoding the multiple transmission blocks, mapping the ACK/NACK responses to a ACK/NACK state information, and transmitting the ACK/NACK state information through a single uplink component carrier, wherein ACK information included in the ACK/NACK state information indicates a number of ACK response among the ACK/NACK responses.