摘要:
An MVA-LCD panel, including an active component array substrate, an opposite substrate and a liquid crystal layer disposed between is provided. The active component array substrate includes scan lines, data lines, control lines and pixel units. Each of the pixel units includes an active component, a domain division electrode (DDE) and a pixel electrode. The active component is electrically connected with the corresponding scan line and the corresponding data line, the DDE being electrically connected with the corresponding control line, the pixel electrode being electrically connected with the active component. The pixel electrode has first slits, and the first DDE are disposed under the first slits. The opposite substrate has a common electrode layer facing toward the active component array substrate. The common electrode layer includes second slits and at least a part of the second slits is disposed over the first domain division electrode.
摘要:
An MVA-LCD panel, including an active component array substrate, an opposite substrate and a liquid crystal layer disposed between is provided. The active component array substrate includes scan lines, data lines, control lines and pixel units. Each of the pixel units includes an active component, a domain division electrode (DDE) and a pixel electrode. The active component is electrically connected with the corresponding scan line and the corresponding data line, the DDE being electrically connected with the corresponding control line, the pixel electrode being electrically connected with the active component. The pixel electrode has first slits, and the first DDE are disposed under the first slits. The opposite substrate has a common electrode layer facing toward the active component array substrate. The common electrode layer includes second slits and at least a part of the second slits is disposed over the first domain division electrode.
摘要:
A pixel structure and a method for generating drive voltages in the pixel structure are disclosed. The pixel structure comprises a first sub-pixel electrode, a first com-line, and a second com-line. The first sub-pixel electrode is applied with a first drive voltage. The first com-line transmits a first com-voltage signal. The second com-line transmits a second com-voltage signal. The first drive voltage is derived by combining the first com-voltage signal and the second com-voltage signal.
摘要:
A liquid crystal display including a number of scan lines, a number of data lines, a pixel, a first switch circuit, and a second switch circuit is provided. The scan lines include an Nth scan line and an (N+1)th scan line, where N is a positive integer. The pixel includes a first sub-pixel and a second sub-pixel. The first switch circuit is coupled to both the Nth scan line and the (N+1)th scan line and is used for controlling the second sub-pixel. The second switch circuit is coupled to the Nth scan line and is used for controlling the first sub-pixel. The pixel is used for displaying a red, a green, a blue, or a white color.
摘要:
A liquid crystal display device and a forming method of the electrode plate are disclosed. The forming method of the electrode plate includes providing one or more bottom plane electrodes, one or more conductive layers and a dielectric layer, floating the bottom plane electrodes, electrically connecting the conductive layers and an electrode of a thin film transistor, positioning the dielectric layer between the bottom plane electrodes and the conductive layers, utilizing the conductive layers, the dielectric layer and the bottom plane electrodes to form a coupling capacitor, and adjusting the capacitance of the coupling capacitor to control the voltage on the bottom plane electrodes. Therefore, the liquid crystal display device makes every sub-pixel have a predetermined voltage-transmittance characteristic curve by controlling the voltage on the bottom plane electrodes.
摘要:
A driving method with reducing image sticking effect is disclosed. The driving method includes applying a voltage on the data lines for trapping impurities crossing the data lines and lowering the degree of the image sticking effect, and applying different asymmetric waveforms to different data lines for trapping impurities crossing the data lines and lowering the degree of the image sticking effect.
摘要:
A driving method with reducing image sticking effect is disclosed. The driving method includes applying a voltage on the data lines for trapping impurities crossing the data lines and lowering the degree of the image sticking effect, and applying different asymmetric waveforms to different data lines for trapping impurities crossing the data lines and lowering the degree of the image sticking effect.
摘要:
A driving method with reducing image sticking effect is disclosed. The driving method includes applying a voltage on the data lines for trapping impurities crossing the data lines and lowering the degree of the image sticking effect, and applying different asymmetric waveforms to different data lines for trapping impurities crossing the data lines and lowering the degree of the image sticking effect.
摘要:
A liquid crystal display (LCD) panel including a first substrate, a plurality of scan lines, a plurality of data lines, a plurality of pixel structures, a second substrate, and a liquid crystal layer is provided. The scan lines, data lines, and pixel structures are disposed on the first substrate. The pixel structures are electrically connected to the corresponding scan lines and data lines. The liquid crystal layer is disposed between the first and the second substrates. Each pixel structure includes a first active device, a first pixel electrode electrically connected to the first active device, and a second pixel electrode. A V-shaped main slit formed between the first and the second pixel electrodes has a tip and two branches connected thereto. The tip of the V-shaped main slit directs towards the second pixel electrode. The edges of the first and the second pixel electrodes adjoining each branch are substantially parallel.
摘要:
An LCD panel including scan lines, data lines, first common lines, second common lines and pixels electrically connected to the scan lines and the data lines is provided. Each pixel has a first display region and a pair of second display regions when the pixels are driven. The first display region and the pair of the second display regions of each pixel are coupled by the first common lines and the second common lines, respectively so as to display different levels of brightness. Besides, the first display region and the second display regions of each pixel are aligned in a column direction, and the first display region of each pixel is disposed between the pair of the second display regions.