Abstract:
A method of supporting group communication over LTE MBMS is provided. A UE first establishes a unicast Evolved Packet Service (EPS) bearer in an LTE network for group communication. The UE belongs to a communication group having a communication group ID. The UE receives access information from the network for monitoring downlink (DL) multicast traffic of the DL group communication based on a multicast decision. The UE is then ready for monitoring a multicast Multimedia Broadcast Multicast Service (MBMS) bearer for receiving the DL multicast traffic. The multicast MBMS bearer is associated with a Temporary Mobile Group Identifier (TMGI), and wherein the TMGI is associated with the communication group ID. The UE later enters RRC_IDLE mode and releases a radio bearer of the unicast EPS bearer while keep monitoring the multicast MBMS bearer for the DL multicast traffic.
Abstract:
A comprehensive solution is provided for multi-carrier scanning and handover operations in OFDM wireless systems. A multi-carrier scanning is any scanning operation that involves multi-carrier radio frequency carriers. In one embodiment, a mobile station communicates with a serving base station over a primary carrier, and performs scanning over one or more determined carriers. A multi-carrier handover is any handover operation that involves multiple radio frequency carriers. In a first embodiment, a break-before-entry (BBE) handover procedure with fast synchronization is provided. In a second embodiment, an entry-before-break (EBB) handover procedure through unavailable intervals is provided. In a third embodiment, EBB handover procedures for both inter-FA and intra-FA using multiple carriers are provided. Finally, in a fourth embodiment, intra-BS handover procedures are provided. The multi-carrier handover procedures may be applied to 2-to-2 or N-to-N carriers handover situation. The overall scanning time and handover interruption time may be reduced through the provided procedures.
Abstract:
A method of power management for a mobile station in a multi-carrier wireless network is provided. A primary connection between the mobile station and a serving base station is first established by performing initial ranging over a primary radio frequency (RF) carrier. A secondary connection between the mobile station and the base station is then established by performing periodic ranging over a secondary RF carrier. To achieve efficient power management, the mobile station performs Open Loop Power Control and obtains long-term link measurement (CSI) of the primary carrier. The mobile station then adjusts carrier-specific parameters based on the primary carrier CSI. For RF carriers that convey on-going data traffic, Close Loop Power Control is updated per RF carrier. When the mobile station enters sleep mode operation, it receives traffic indication messages on the primary RF carrier and then dynamically wakes up one or more corresponding RF carriers for data reception.
Abstract:
A method of failure event reporting for initial connection setup failure is proposed. In one embodiment, a UE first camps in RRC_IDLE mode in a cell served by a base station. The UE then detects a connection setup failure when performing a random access channel (RACH) procedure with the base station in an RRC connection attempt. The UE records a failure event report when the RACH procedure fails. Later, the UE transmits the failure event report to the network in RRC_CONNECTED mode. The failure event report comprises information that refers to the earlier RRC connection attempt. The failure event report also comprises available location information or available mobility measurements at the time the initial connection setup failure occurs. Based on the failure event report, the network can adopt corrective actions accordingly to mitigate the failure.
Abstract:
A method of collecting and providing traffic statistics in a cellular network in accordance is proposed. A UE establishes an RRC connection with a base station. The UE starts to collect traffic statistics that comprises a CDF curve or a PDF diagram for packet inter-arrival time. The UE may receive a measurement configuration from the base station for the traffic statistics collection. The UE then reports a representation of the traffic statistics to the base station for RRC reconfiguration. The UE may also receive a reporting request from the base station that specifies a representation format. The representation format includes one or more probability values at corresponding inter-arrival time points, at least one slope of the CDF, one or more steep events in the CDF, or a PDF range.
Abstract:
A method and apparatus for active location acquisition. An active location acquisition controller is included in a device. The active location acquisition controller can be a circuit or code running on a processor included in the device. A measurement collection request is communicated to the device. The device then determines if and how a location information is to be acquired. If the device determines that the location information is to be acquired, the device enables a location acquisition system to acquire the location information and the device then acquires the requested measurement and stores the requested measurement and the location information in the measurement log. If the device determines that the location information is not to be acquired, the device disables a location acquisition system and does not acquire the location information and the device then acquires the requested measurement and stores the requested measurement in the measurement log.
Abstract:
A method of network-based positioning using sounding reference signal (SRS) is proposed. An eNodeB configures a number of parameters of a periodic SRS transmission for a user equipment (UE). The eNodeB then transmits SRS configuration data for SRS measurements performed by a location measurement unit (LMU). The SRS configuration data includes cell-specific SRS bandwidth configuration and UE-specific SRS bandwidth configuration. The SRS configuration data may further include a number of antenna ports for SRS transmission, SRS frequency hopping bandwidth configuration, information on whether SRS sequence-group hopping is enabled, and ΔSS when SRS sequence hopping is enabled. Upon receiving the SRS configuration data, the LMU is able to perform timing measurements over the received SRS signals from the UE. In one embodiment, the LMU detects SRS dropping to avoid performance degradation of the network-based positioning.
Abstract:
A method of configuring a set of active cells among neighboring cells to reduce latency and interruption for inter-cell mobility is proposed. The set of active cells is an active set of cells among which UE can do fast cell switching. The set of active cells is configured by the network based on UE measurement report or network deployment information. UE maintains the configuration and can perform pre-synchronization to the configured active cells in downlink (DL) only or in both DL and uplink (UL). UE maintains the DL/UL synchronization with the active cells, and applies configuration once UE is indicated to switch to an active cell as the target cell. Because UE maintains the configuration and DL/UL timing of the target cell before receiving the cell-switch command, the mobility latency and interruption time for inter-cell mobility is reduced.
Abstract:
Various solutions for data transmission over multiple uplink carrier with respect to user equipment (UE) in mobile communications are described. A UE may establish a connection over a downlink component carrier and a first uplink component carrier with a network apparatus. The UE may further establish a connection over a second uplink component carrier with the network apparatus. The UE may transmit uplink data to the network apparatus via at least one of the first uplink component carrier and the second uplink component carrier. The UE may also assign the first uplink component carrier as a primary carrier and assigning the second uplink component carrier as a supplementary carrier. The UE may further switch the primary carrier from the first uplink component carrier to the second uplink component carrier.
Abstract:
A method can include receiving measurement configurations for measuring serving/neighboring cells at a user equipment (UE) in a wireless communication system. The measurement configurations can indicate multiple measurement objects (MOs) each with a SSB measurement timing configuration (SMTC) specifying a sequence of SMTC window durations (i.e. SMTC occasions), and a sequence of gap occasions. The MOs can be measured within the SMTC occasions that overlap the gap occasions. The method can further include determining a carrier-specific scaling factor for a target MO in the multiple MOs based on candidate MOs to be measured in each of the gap occasions.