Abstract:
A base station (105) includes a scheduler (220) to determine a location of a user terminal (110) within a cell (125) of a wireless system (100). The cell has a cell boundary (125). The scheduler (220) also determines a subcarrier frequency diverse resource allocation for a call on the user terminal (110) in response to the location of the user terminal (110) being within a predetermined distance from an edge of the cell boundary (125). The scheduler (220) further determines a subcarrier frequency selective resource allocation for the call on the user terminal (110) in response to the location of the user terminal (110) being beyond a predetermined distance from the edge of the cell boundary. The base station (105) also includes a transceiver (215) to transmit the call according to the subcarrier frequency diverse resource allocation and the subcarrier frequency selective resource allocation.
Abstract:
During operation radio frames are divided into a plurality of subframes. Data is transmitted over the radio frames within a plurality of subframes, and having a frame duration selected from two or more possible frame durations.
Abstract:
In a multi-carrier communication system employing adaptive modulation and coding, a receiver feeds back channel quality information for a “binned” group of subcarriers instead of sending an individual quality report for each subcarrier. A transmitter will utilize the channel quality information for the bin to determine a set of γeff values corresponding to a set of modulation and coding scheme candidates, where γeff is an effective SNR that would yield a same FER in an AWGN channel. The transmitter utilizes the set of γeff values to aid in determining a modulation and coding scheme, and determine a single modulation and coding scheme for all subcarriers within the channel.
Abstract:
Narrowband remote units will scan over frequencies within a wideband channel spectrum, evaluating frequency-selective channel characteristics. The best sub-channel(s) for communication will be determined and reported back to a base station via a channel-quality report message. The base station will then utilize only a narrowband portion (e.g., one sub-channel comprised of a plurality of OFDM subcarriers) of the wideband channel for transmitting data to the narrowband unit.
Abstract:
A method in wireless communications network infrastructure including transmitting (210) first layer broadcast/multicast service content information on a first channel, and transmitting (220) second layer broadcast/multicast service content information on a second channel, at least one of the first and second channels a shared broadcast channel, wherein the first and second layer broadcast/multicast service content information is related. The information is received and combined (230) at a subscriber device, wherein a least one of the first and second layers capable of being decoded and used without the other of the first and second layers.
Abstract:
A squished trellis encoder encodes blocks of information with unequal error correction. A multiplexing switch partitions the information block into a first portion and a second portion. A first trellis encoder encodes the first portion. A second trellis encoder encodes the second portion. An initial state information generator maps the states of the first trellis encoder to the second trellis encoder to establish initial conditions for the states of the second trellis encoder. A delay delays the second portion from processing by the second trellis encoder until the initial state information generator has mapped the states. An associated decoder can use the novel squished approach or other alternative approaches.
Abstract:
An embodiment of a system for operating a communications controller and a user equipment in a wireless communications system is provided. The communications controller is configured to allocate a first set of subframes to a group of UEs for a DMC link, allocate a second set of subframes to a particular UE in the group of UEs, transmit a first message including information about the first set of subframes to the group of UE, and transmit a second message including information about the second set of subframes to the particular UE. The second set of subframes is a subset of the first set of subframes, and information about the second set includes subframes in which the particular UE may transmit to other UEs in the group of UEs. Subframes in the first set not in the second set are allocated for reception by the particular UE.
Abstract:
A system and method for a system and method for allocating network resources for a communications link are provided. A method for communications controller operations includes allocating network resources to a communications link. The communications link includes an uplink (UL) part and a downlink (DL) part. The method also includes if a type of the allocated network resources is not equal in the DL part and the UL part, transmitting a first indication of the allocated network resources for one part of either the UL part or the DL part and a second indication of the allocated network resources for a remaining part of either the UL part or the DL part. The first indication and the second indication are based on an amount of network resources allocated. The method further includes if the type of the allocated network resources is equal in the DL part and the UL part, transmitting an indication of the allocated network resources for one part of either the UL part or the DL part. The indication is based on an amount of network resources allocated.
Abstract:
A method and apparatus for generating a single statically defined downlink reference MCS table consisting of transport block sizes (TBSs) computed for 29 MCSs for each of j PRBs where j=1, . . . , NRBDL. Three entries of the MCS table are reserved for implicit modulation order signaling (e.g. in the downlink) or implicit redundancy version signaling (e.g. in the uplink). Each MCS entry in the table is populated by a TBS and the table entries are accessed based on a 5-bit MCS index and resource allocation information, indicating the number of PRBs is signaled via a scheduling message which may be a grant or assignment message. A grant or assignment message may further include a 5-bit MCS field for each transport block which, along with the resource allocation information, enables the UE to determine the scheduled TBS.
Abstract:
A method for transmitting resource allocation information to a wireless node in a communications system includes selecting a search space from one of a first search space and a second search space, the first search space associated with a first set of control channel parameters and the second search space associated with a second set of control channel parameters. The method also includes modulating the first control information, and mapping the modulated first control information onto the selected search space in a first subframe, where at least one of modulating the first control information and mapping the modulated first control information is according to a selected set of control channel parameters associated with the selected search space. The method further includes transmitting the first subframe to the wireless node, and transmitting a first parameter indicator identifying the selected set of control channel parameters to the wireless node.