Abstract:
An arrangement to transmit magnetic resonance signals has at least two reception branches. Each reception branch contains a single antenna of a local coil as well as an amplifier connected with the single antenna, such that an amplified magnetic resonance signal is formed from a magnetic resonance signal that is acquired via the single antenna. In a multiplexer, each input is connected with a respective reception branch, such that the amplified magnetic resonance signals of the reception branch are combined by the multiplexer into a resulting signal using a time multiplexing method. A transmission path is connected on one side with an output of the multiplexer and on the other side with a receiver, such that the resulting signal is transmitted from the multiplexer to the receiver via the transmission path.
Abstract:
A circulator has a ferrite, and the circulator is arranged in the vicinity of a device that produces a static magnetic field in the environment surrounding the device, this static magnetic field giving the circulator a non-reciprocal behavior, with respect to circulation of energy among the gates of the circulator, as a result of interaction of the ferrite with the static magnetic field. A magnetic resonance apparatus embodies such a circulator, and the basic field magnet of this magnetic resonance apparatus generates the static magnetic field.
Abstract:
In a method and device for the transmission of a multiplicity of signals having different frequencies between a base station and a module situated at a location remote from the base station via a single, common cable connection, some of the signals being transmitted from the electronic assembly to the module and, in general simultaneously, the remaining signals are transmitted in the opposite direction. Each of the base station and the module has bandpass filter bank therein having a multiplicity of bandpass filters, the number thereof being a function of the number of channels to be transmitted, with which the respectively received signals are spectrally separated from one another so that they are available for further signal processing in the base station, or for further use in the module.
Abstract:
A method and a transmission system are disclosed for the transmission of wanted signals between a sensor and an evaluation unit. In order to suppress interference to the sensor signals due to external interference sources as far as possible, at least one embodiment of the inventive system has at least one signal receiver with the sensor for detecting a wanted signal and a signal processing device for conditioning the wanted signal, at whose output a mixed signal with a wanted signal component and an interference signal component from at least one interference source are present; an interference source signal input for detecting at least one interference source signal of the at least one interference source; a filter device for reconstructing the interference signal component as a function of the at least one interference source signal; and a subtractor for eliminating interference superimposed on the wanted signal.
Abstract:
An arrangement for controlling an antenna arrangement in a magnetic resonance device has an antenna arrangement that surrounds an examination region and that has at least one antenna element for emitting an amplified transmit signal. At least one amplifier is provided, at the input of which a high-frequency transmit signal is connected, which is present on the output side of the amplifier as an amplified transmit signal. The amplifier is connected to a feed point of the antenna arrangement on the output side, in order to emit the amplified transmit signal. Coil windings of a primary gradient coil are also provided, which at least partially include the antenna arrangement and the examination region. Coil windings of a secondary gradient coil at least partially include the coil windings of the primary gradient coil, the antenna arrangement (and the examination region). The coil windings of the secondary gradient coil and the coil windings of the primary gradient coil are at a distance from one another, in which the at least one amplifier is arranged.
Abstract:
A resonator for magnetic resonance applications has a conductor element proceeding in an extension direction, that operates with a resonance current at a resonance frequency oscillating therein in the extension direction. The conductor element is tuned to the resonance frequency and has an overall length in the extension direction that is smaller than half of the wavelength of the resonance frequency. The conductor element is a multi-layer conductor with layers that are electrically insulated from each other that, in said extension direction, have layer ends that are capacitively coupled with each other. During operation of the conductor element at the resonance frequency, respective layer currents flow in the layers in the extension direction that are substantially equal in magnitude.
Abstract:
A magnetic resonance system has multiple individual transmission antennas each charged with a transmission current to emit an individual excitation field in an examination volume to excite magnetic resonances in a subject in the examination volume, with a total excitation field being a superimposition of the individual excitation fields. A determination device is provided with a spatial distribution of an absorption rate of the examination subject and determines a combination of amplitudes and phase positions for the transmission currents relative to one another such that a locally absorbed power at a first point of the examination subject relative to a locally absorbed power at a second point of the examination subject satisfies a relative condition. The determination device communicates the combination of amplitudes and phase positions that it has determined to a control device. The control device charges the transmission antennas with transmission currents whose phase positions correspond with the phase positions communicated by the determination device and whose amplitudes are scaled with a uniform scaling factor for all transmission currents relative to the amplitudes communicated by the determination device.
Abstract:
An arrangement to transmit magnetic resonance signals has a local coil composed of a number of individual antennas for acquisition of radio-frequency signals of a magnetic resonance examination. Preamplifiers amplify the radio-frequency signals, and a transmission device transmits the radio-frequency signals from the local coil to the preamplifiers. The transmission device is fashioned as a readout coil and has a number of individual antennas. The individual antennas of the readout coil are magnetically coupled with the individual antennas of the local coil, with the individual antennas of the local coil and the individual antennas of the readout coil forming a linear MIMO transmission system describable by a transmission matrix.
Abstract:
An arrangement to transmit magnetic resonance signals has at least two reception branches. Each reception branch contains a single antenna of a local coil as well as an amplifier connected with the single antenna, such that an amplified magnetic resonance signal is formed from a magnetic resonance signal that is acquired via the single antenna. In a multiplexer, each input is connected with a respective reception branch, such that the amplified magnetic resonance signals of the reception branch are combined by the multiplexer into a resulting signal using a time multiplexing method. A transmission path is connected on one side with an output of the multiplexer and on the other side with a receiver, such that the resulting signal is transmitted from the multiplexer to the receiver via the transmission path.
Abstract:
In a method for implementation of a magnetic resonance examination, and a magnetic resonance apparatus, and an array for acquisition of magnetic resonance signals, and a magnetic resonance signal at a magnetic resonance frequency are acquired from an examination region with an array of frequency conversion units after an RF excitation and are radiated as frequency-converted signals. The resulting signal field is acquired by a number of reception antennas of a second antenna array, which are arranged at different spatial positions and thus allow a spatial resolution of the frequency-converted signals. The acquired acquisition signals are used for image reconstruction.