摘要:
An optical switch section that switches the path of an optical packet transmitted thereto and outputs the optical packet, and a control section that generates multiple switch control signals in accordance with the destination of an optical packet transmitted thereto, transmits the multiple control signals to the optical switch section through multiple signal transmission lines and controls the ON/OFF states of multiple optical switches are included, and delay measuring means for measuring a difference in delay time among the multiple signal transmission lines is provided. In this case, the control section adjusts the transmission times of the multiple switch control signals such that the difference in delay time measured by the delay measuring means can be cancelled and that the multiple switch control signals transmitted through the multiple signal transmission lines can arrive at the multiple optical switches simultaneously and transmits the multiple switch control signals.
摘要:
An optical packet switching apparatus includes plural optical switches, an optical switching section that switches a path of an optical packet transmitted thereto according to the switch control signal to output the optical packet, and a control section that takes out a header portion representing a destination of the optical packet transmitted, photoelectrically converts the header to generate the switch control signal according to the destination to transmit the switch control signal to the optical switching section and controls the optical switch. The apparatus further includes a light monitor section that monitors a light quantity level of the optical packet transmitted and a light quantity level of the optical packet to be sent out, and an abnormality recognizing section that recognizes an effective timing of monitoring of the light quantity levels based on the switching control signal, and recognizes an abnormality based on the light quantity levels at the timing.
摘要:
An optical switching device the size and costs of which are reduced by decreasing the number of switching elements and which can flexibly accommodate the expansion of the number of ports. An optical demultiplexing section has 2n (n=1, 2, 3, . . . ) input ports and 2m (m>n) output ports and includes demultiplexing couplers for demultiplexing input optical packets. A switch fabric section includes optical gate elements for switching optical packets outputted from the optical demultiplexing section by switch drive control. An optical multiplexing section has 2m input ports and 2n output ports and includes multiplexing couplers for multiplexing the optical packets which pass through the optical gate elements. A scheduler exercises control over an entire optical packet switching process.
摘要:
A phase shift unit provides a prescribed phase difference (π/2, for example) between a pair of optical signals transmitted via a pair of arms constituting a data modulation unit. A low-frequency signal f0 is superimposed on one of the optical signals. A signal of which phase is shifted by π/2 from the low-frequency signal f0 is superimposed on the other optical signal. A pair of the optical signals is coupled, and a part of which is converted into an electrical signal by a photodiode. 2f0 component contained in the electrical signal is extracted. Bias voltage provided to the phase shift unit is controlled by feedback control so that the 2f0 component becomes the minimum.
摘要:
The present invention relates to an optical switch apparatus made to successively carry out the route switching with respect to frame signal light inputted through various paths while eliminating the dispersion of an output power value. In the optical switch apparatus, input side deflecting units are disposed in corresponding relation to a plurality of input ports and output side deflecting units are disposed in corresponding relation to a plurality of output ports. Each input side deflecting unit and each output side deflecting unit are constructed in a manner such that a plurality of optical deflecting elements made to deflect signal light in response to an electric field applied are arranged in a cascade fashion, and the optical deflecting element constituting the input side deflecting unit or the output side deflecting unit is made so as to variably adjust the level of signal light to be outputted from the output side deflecting unit to the output port.
摘要:
An optical add/drop multiplexer of the invention includes: a wavelength blocker for blocking signal light having at least one wavelength out of a plurality of signal lights included in WDM light supplied from a transmission line and passing the other signal light; an optical coupler for multiplexing signal light having the same wavelength as that of the signal light blocked by the wavelength blocker to signal light passed through the wavelength blocker; a WDM amplifier for amplifying the WDM light multiplexed by the optical coupler and outputting the amplified light; and an optical branch coupler for branching the WDM light output from the WDM amplifier into two lights, extracting signal light having at least one wavelength different from the wavelength of signal light multiplexed by the optical coupler from one of the branched lights, and outputting the other branched light to the transmission line. With the configuration, a small and cheap optical add/drop multiplexer as a flexible OADM node can be provided.
摘要:
In the control method for the optical filter according to the present invention, WDM signal light obtained by wavelength division multiplexing a plurality of optical signals having different wavelengths is supplied to an optical filter to obtain output WDM signal light including a part of the plurality of optical signals. The output WDM signal light is converted into an electrical signal per wavelength channel of the output WDM signal light. Then, the optical filter is controlled according to the electrical signal so that the characteristic of the optical filter becomes stable.
摘要:
A wavelength-tunable stabilized laser is provided with a light source comprising a plurality of lasers capable of oscillating at a plurality of wavelengths, a light detecting part for detecting the light intensity of laser light output from the light source via a periodic filter, and a controlling part for generating oscillation of one of the lasers of the light source and controlling the oscillation wavelength of the laser so that the output value of the light detecting part becomes equal to a predetermined one of a plurality of target values. The wavelength-tunable stabilized laser is able to generate oscillation of laser light at a desired wavelength, of the plurality of wavelengths, and to stabilize the wavelength.
摘要:
An object of the invention is to provide a wavelength locker which has a wider locking range than that of the wavelength locker in the prior art and which can cope with a plurality of wavelengths. The aforementioned objects are achieved by a wavelength locker, which comprises a periodic filter, a detecting part for detecting the intensity of a laser beam through the periodic filter, and a controlling part for controlling the wavelength of the laser beam to a desired wavelength in accordance with the output of the detecting part. In this wavelength locker, the FSR of the periodical filter is controlled according to space between the wavelengths, and refers to the number of wavelength to be locked, so that the characteristics corresponding to output wavelengths that vary in every period twice the space of wavelengths and are complementary to each other, can be obtained, and the locking range will become wider.
摘要:
This invention discloses an optical transmission device used for bi-directional optical communications. The optical transmission device comprises a uni-directional optical signal processing unit for performing specified optical signal processing for optical signals transmitted in a single direction and a uni-direction/bi-direction changing unit for unifying the flows of clockwise and counterclockwise optical signals in a single direction, inputting these flow-unified optical signals to the uni-directional optical signal processing unit and dividing the flow of optical signals from the uni-directional optical signal processing unit between clockwise and counterclockwise directions. Bi-directional wavelength-division multiplexing optical communications can be performed by unifying the transmission routes (flows) of optical signals transmitted in two ways in a single direction and using the existing optical transmission device for uni-directional optical communications.