摘要:
A method is provided for monitoring a well. In a described embodiment, the method uses annulus pressure to communicate between a downhole system and a remote location. The method may use intermittent electrical power generated by changes in annulus pressure to power the downhole system. Various sensors and well tools may be monitored and actuated by the downhole system, and acquired data may be transmitted to the remote location.
摘要:
A power generating system (100) for a downhole operation (10) having production tubing (40) in a wellbore (12) includes a magnetized rotation member (110) coupled to the wellbore (12) within the production tubing (40), the rotation member (110) having a passageway (112) through which objects, such as tools, may be passed within the production tubing (40). Support braces (170, 172) couple the rotation member (110) to the production tubing (40) and allow the rotation member (110) to rotate within the production tubing (40). Magnetic pickups (150, 152) are predisposed about the rotation member (110) within the wellbore (12) and a power conditioner (200) is provided to receive currents from the magnetic pickups (150, 152) for storage and future use. The rotation member (110) rotates due to the flow of fluid, such as crude oil, through the production tubing (40) which causes the rotation member (110) to rotate and induce a magnetic field on the magnetic pickups (150, 152) such that electrical energy is transmitted to the power conditioner (200), the power conditioner able to store, rectify, and deliver power to any one of several electronic components within the wellbore (12).
摘要:
A method of simultaneously stimulating at least a first and second zone of a subterranean formation that includes flowing a fluid through multiple flow rate restrictors, with a first restrictor located adjacent the first zone, a second restrictor located adjacent the second zone, and the first and second restrictors are connected in parallel. As at least one of the fluid properties changes, the flow rates of the fluid exiting the first and second restrictors are similar within a flow rate range, and allowing the fluid to stimulate at least the first and second zones. As at least one of the properties of the fluid changes, the pressure differential between a fluid inlet and a fluid outlet increases and as the pressure differential increases, the flow rate of the fluid exiting the fluid outlet is maintained within the flow rate range.
摘要:
Apparatus and methods for controlling the flow of fluid, such as formation fluid, through an oilfield tubular positioned in a wellbore extending through a subterranean formation. Fluid flow is autonomously controlled in response to change in a fluid flow characteristic, such as density or viscosity. A fluid diverter is movable between an open and closed position in response to fluid density change and operable to restrict fluid flow through a valve assembly inlet. The diverter can be pivotable, rotatable or otherwise movable in response to the fluid density change. The diverter is operable to control a fluid flow ratio through two valve inlets. The fluid flow ratio is used to operate a valve member to restrict fluid flow through the valve.
摘要:
According to an embodiment, a device for directing the flow of a fluid comprises: a fluid chamber; a first outlet; a second outlet; a first outlet fluid passageway, wherein the first outlet fluid passageway is operatively connected to the first outlet; and a second outlet fluid passageway, wherein the second outlet fluid passageway is operatively connected to the second outlet; wherein the fluid rotationally flows about the inside of the chamber, and wherein the fluid flowing through the first outlet fluid passageway conjoins with the fluid flowing through the second outlet fluid passageway at a point downstream of the first and second outlet. According to another embodiment, a device for directing the flow of a fluid comprises: a sensor; a first outlet connected to the sensor; a second outlet connected to the sensor; a first outlet fluid passageway; and a second outlet fluid passageway; wherein as the total number of phases of the fluid increases, the sensor directs at least a first phase of the fluid into the first outlet fluid passageway and directs at least a second phase of the fluid into the second outlet fluid passageway, and wherein the fluid flowing through the first outlet fluid passageway conjoins with the fluid flowing through the second outlet fluid passageway at a point downstream of the first and second outlet.
摘要:
An actuation device comprises a housing comprising one or more ports, a magnetic valve component, and a central flowbore. The central flowbore is configured to receive a disposable member configured to emit a magnetic field, and the magnetic valve component is configured to radially shift from a first position to a second position in response to interacting with the magnetic field.
摘要:
A flow control device can include a surface that defines a chamber and includes a side perimeter and opposing end surfaces, a greatest distance between the opposing end surfaces being smaller than a largest dimension of the opposing end surfaces, a first port through one of the end surfaces, and a second port through the surface and apart from the first port, the side perimeter surface being operable to direct flow from the second port to rotate about the first port. Another device can include a cylindroidal chamber for receiving flow through an inlet and directing the flow to an outlet, a greatest axial dimension of the cylindroidal chamber being smaller than a greatest diametric dimension of the cylindroidal chamber, the cylindroidal chamber promoting rotation of the flow based on a characteristic of the inflow through the inlet. The device can have a flow path structure in the cylindroidal chamber.
摘要:
A method of propagating pressure pulses in a well can include flowing a fluid composition through a variable flow resistance system which includes a vortex chamber having at least one inlet and an outlet, a vortex being created when the fluid composition spirals about the outlet, and a resistance to flow of the fluid composition alternately increasing and decreasing. The vortex can be alternately created and dissipated in response to flowing the fluid composition through the system. A well system can include a variable flow resistance system which propagates pressure pulses into a formation in response to flow of a fluid composition from the formation.
摘要:
Disclosed are systems and methods of positive indication of the proper actuation of a downhole tool. One system includes a work string providing a flow path therein, a downhole tool coupled to the work string and having a body fluidly coupled to the flow path, an indicator chamber defined in the body and configured to retain a substance therein until the downhole tool is actuated, whereupon the indicator chamber becomes exposed and the substance is released into the flow path, and an optical computing device in optical communication with the flow path and configured to detect a characteristic of the substance in the flow path and communicate a signal when the characteristic is detected, the signal being indicative that the downhole tool has been actuated.
摘要:
Apparatus and methods are described for autonomously controlling fluid flow in a tubular in a wellbore. A fluid is flowed through an inlet passageway into a biasing mechanism. A fluid flow distribution is established across the biasing mechanism. The fluid flow distribution is altered in response to a change in the fluid characteristic over time. In response, fluid flow through a downstream sticky switch assembly is altered, thereby altering fluid flow patterns in a downstream vortex assembly. The method “selects” based on a fluid characteristic, such as viscosity, density, velocity, flow rate, etc. The biasing mechanism can take various forms such as a widening passageway, contour elements along the biasing mechanism, or a curved section of the biasing mechanism passageway. The biasing mechanism can include hollows formed in the passageway wall, obstructions extending from the passageway wall, fluid diodes, Tesla fluid diodes, a chicane, or abrupt changes in passageway cross-section.