Abstract:
Systems and methods for performing unsupervised baselining and anomaly detection using time-series data are described. In one or more embodiments, a baselining and anomaly detection system receives a set of time-series data. Based on the set of time-series, the system generates a first interval that represents a first distribution of sample values associated with the first seasonal pattern and a second interval that represents a second distribution of sample values associated with the second seasonal pattern. The system then monitors a time-series signals using the first interval during a first time period and the second interval during a second time period. In response to detecting an anomaly in the first seasonal pattern or the second seasonal pattern, the system generates an alert.
Abstract:
Techniques are described for generating seasonal forecasts. According to an embodiment, a set of time-series data is associated with one or more classes, which may include a first class that represent a dense pattern that repeats over multiple instances of a season in the set of time-series data and a second class that represent another pattern that repeats over multiple instances of the season in the set of time-series data. A particular class of data is associated with at least two sub-classes of data, where a first sub-class represents high data points from the first class, and a second sub-class represents another set of data points from the first class. A trend rate is determined for a particular sub-class. Based at least in part on the trend rate, a forecast is generated.
Abstract:
A method for obtaining data items from an unresponsive database host. The method includes receiving an indication that the database host is unresponsive, receiving, from a management server via a diagnostic connection, a first request for a first organized data item, and sending a first query, using a first interface, to a memory for the first organized data item. The method further includes receiving, from the management server via a normal connection, a second request for a second organized data item, retrieving, from memory on the database host, a first data item in response to the first query, converting the first data item into the first organized data item, and sending the first organized data item to the management server, wherein the first organized data item is analyzed to determine a source causing the database host to be unresponsive.
Abstract:
According to an embodiment, storage configurations are identified for storing items, such as database tables, partitions, or any other types of objects or data structures, within a desired storage area, such as an in-memory data store or any other limited storage resource. Each of the storage configurations is assigned to a particular item of the items. Each of the storage configurations associates the assigned particular item with one or more storage configuration options. Storage recommendations are generated for at least a set of the storage configurations. A different storage recommendation exists for each storage configuration in the set of the storage configurations. The storage recommendation associates the storage configuration with a range of possible storage sizes for a particular storage area of a system. Based on the storage recommendations, recommended system configurations a generated for different possible storage sizes of the particular storage area.
Abstract:
A method for determining event counts for a database system includes capturing samples for the active sessions based on a pre-defined sampling frequency and identifying events from the captured samples. The method further includes determining the wait time for each of the identified events and determining an event count for the active sessions using a harmonic mean. The harmonic mean is a summation of the maximum of either one or the ratio of the sampling frequency to the determined wait time for each of the identified events.