摘要:
Embodiments are generally directed to improving the interface between one or more electrode contacts of a medical implant and the neurons of a recipient of the medical implant. In an embodiment, a growth factor is applied to stimulate the growth of peripheral processes (also referred to as dendrites). Then an electric field is applied to direct the growth of the peripheral processes towards the electrode contact. Growing peripheral processes towards the electrode contacts may reduce the charge required to stimulate the peripheral processes and improve operation of the medical implant.
摘要:
An elongate stylet for removable insertion into a lumen of a stimulating medical implant, comprising a plurality of contiguous longitudinal regions, wherein a cross-sectional area of at least some of the regions are different.
摘要:
An electrode array for a cochlear implant is formed with a carrier made, for example from silicone, is preshaped and is formed with a lumen. The array is shaped to assume a first. The array can be straightened, and held in a straight configuration by inserting a stylet into the lumen. The array relaxes to a shape matching the curvature of the cochlea when the lumen is removed. The electrodes of the array are disposed on one side of the array to face the modiolus when the array is inserted into the cochlea.
摘要:
Embodiments are generally directed to a securable inner drug delivery plug or stopper that is configured to be inserted into, and secured (retained) within, an opening of the inner ear of an recipient. The securable inner drug delivery plug is configured to deliver drugs directly into the inner ear.
摘要:
Embodiments presented herein are generally directed to a perioperative implant cover configured to cover at least a portion of an implantable component during portions of the perioperative period (i.e., preoperative, intraoperative, and postoperative phases of surgery) in which the implantable component is susceptible to bacteria contamination. By covering the implantable component during these portions of the perioperative period, the cover reduces the possibility of bacteria contamination and subsequent perioperative colonization.
摘要:
Presented herein are separable magnet arrangements for use with encapsulated implantable components. A separable magnet arrangement includes an implantable magnet is at least one of fully encapsulated in, and mechanically severable from, an overmolding of the encapsulated implantable component or an implantable magnet that is physically separate from the encapsulated implantable component.
摘要:
Disclosed is an electrode having a conducting wire and an electrode contact for a medical implant, the electrode being at least partially formed by Carbon Nanotubes (CNTs). Also disclosed are medical implants using the electrodes disclosed, as well as methods of manufacture of the electrode and medical implants. In one particular example, the electrode is formed with a CNT strand forming the conducting wire and a CNT sheet forming the electrode contact.
摘要:
An implantable component of a medical device, comprising a polymeric surface. The component includes one or more macro-surface features at the polymeric surface having a configuration that, following application of a liquid drug to the surface retains a quantity of the liquid drug adjacent the surface.
摘要:
Coating an elongate, uncoated conductive element with a substantially continuous barrier layer. An uncoated conductive element is around a frame comprising spaced supports. During deposition, the relative position of the conductive element to the frame is adjusted so that all sections of the conductive element are physically separated from the supports for a time that is sufficient to form a desired coating of barrier material on all sections of the conductive element.
摘要:
Embodiments are generally directed to improving the interface between one or more electrode contacts of a medical implant and the neurons of a recipient of the medical implant. In an embodiment, a growth factor is applied to stimulate the growth of peripheral processes (also referred to as dendrites). Then an electric field is applied to direct the growth of the peripheral processes towards the electrode contact. Growing peripheral processes towards the electrode contacts may reduce the charge required to stimulate the peripheral processes and improve operation of the medical implant.