Abstract:
Methods, systems, devices, and apparatus for wireless communication are described that relate to transmission of a set of precoded reference signals, and using a physical resource group (PRG) size for the resources carrying the set of reference signals for channel estimation at a user equipment (UE). For example, a base station may apply a precoding matrix to a set of reference signals, and the reference signals may be configured on a set of resources. In such cases, the resources including these reference signals having a same precoding may be included in a PRG, and a size of the PRG may refer to a number of precoded reference signals for which the precoding is the same. Based on the received reference signals and the PRG size the UE may perform channel estimation based on the PRG size and transmit channel state information (CSI) to the base station.
Abstract:
Certain aspects of the present disclosure provide techniques for reporting explicit channel state information (CSI) with spatial and time domain compression.
Abstract:
Certain aspects of the present disclosure generally relate to techniques for encoding and decoding bits of information using cyclic redundancy check (CRC) concatenated polar encoding and decoding. The CRC concatenated polar encoding techniques may avoid transmission of dummy bits. A method generally includes obtaining the bits of information to be transmitted. The method includes performing CRC outer encoding of the bits of information using an even-weighted generator polynomial to produce CRC encoded bits. The method includes performing polar inner encoding of the CRC encoded bits to generate a codeword. The method includes discarding a first code bit at a beginning of the codeword. The shortened codeword is transmitted over a wireless medium. In another method, bit-level scrambling is performed on the CRC encoded bits before the polar encoding to avoid generating a dummy bit. In another method, only odd-weighted generator polynomials are selected to avoid generating the dummy bit.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may receive or determine information identifying a mapping of one or more codewords with regard to one or more layers, wherein the one or more layers include at least one of: a first set of layers, wherein a fraction of bits associated with each layer, of the first set of layers, is for data associated with the UE, or a second set of layers, wherein all bits associated with each layer, of the second set of layers, are for data associated with the UE; and perform rate matching or decoding based at least in part on the information identifying the mapping. Numerous other aspects are provided.
Abstract:
A user equipment (UE) may be configured with a first set of indexed timing offsets for determining offsets between uplink grants and uplink data transmissions and a second set of indexed timing offsets for determining offsets between an aperiodic channel state information (CSI) trigger and transmission of an aperiodic CSI report. A UE may receive both an uplink grant for an uplink data transmission and an aperiodic CSI report trigger. The UE may determine a timing offset for transmission of both the uplink data transmission and the aperiodic CSI report. The timing offset may be based at least in part on the first set of indexed timing offsets, the second set of indexed timing offsets, or a third set of indexed timing offsets for joint transmission of uplink data and aperiodic CSI. The UE may transmit the uplink data transmission and the aperiodic CSI report according to the timing offset.
Abstract:
An apparatus and method for communication including determining an assignment for one of a plurality of symbol durations in a format combination; determining if at least one bit from one or more first upper channels is available if the assignment is associated with the one or more first upper channels and occupying the one of the plurality of symbol durations with the at least one bit, or if unavailable, occupying the one of the plurality of symbol durations with at least one bit from one or more second upper channels or another first upper channel, wherein the first upper channels and the second upper channels are different; and disabling transmission of format information; or including enabling a BTFD hypothesis testing mode; receiving one or more symbol durations on a physical channel; and attempting to decode the received symbol duration with a first hypothesis that a DCCH channel is not transmitted.
Abstract:
An apparatus and method for communication including determining an assignment for one of a plurality of symbol durations in a format combination; determining if at least one bit from one or more first upper channels is available if the assignment is associated with the one or more first upper channels and occupying the one of the plurality of symbol durations with the at least one bit, or if unavailable, occupying the one of the plurality of symbol durations with at least one bit from one or more second upper channels or another first upper channel, wherein the first upper channels and the second upper channels are different; and disabling transmission of format information; or including enabling a BTFD hypothesis testing mode; receiving one or more symbol durations on a physical channel; and attempting to decode the received symbol duration with a first hypothesis that a DCCH channel is not transmitted.
Abstract:
Methods, systems, and devices for wireless communications are described. A user equipment (UE) may receive control signaling indicating a channel state information (CSI) reporting configuration for time-domain CSI reporting associated with a set of time intervals and a CSI reference resource, where the CSI reference resource is included within one of the set of time intervals. In other words, the CSI reporting configuration may define an association, alignment, or arrangement between the CSI reference resource and the set of time intervals. The UE may perform measurement of, prediction based on, or both, one or more CSI-RSs in accordance with the CSI reporting configuration. The UE may then transmit a time-domain CSI report indicating time-domain CSI associated with the set of time intervals, where the alignment enables the network to determine which time intervals correspond to the respective time-domain CSI.
Abstract:
Certain aspects of the present disclosure provide techniques for port selection for channel state feedback with analog feedforward. A method that may be performed by a user equipment (UE) includes selecting one or more channel state information reference signals (CSI-RS) ports, of a plurality of CSI-RS ports, for the UE to report CSI. The port selection includes selecting any of the plurality of CSI-RS ports for selecting CSI-RS based on a grouping of the plurality of CSI-RS ports. The UE determines a precoding matrix indicator (PMI) formed by a linear combination of the one or more selected CSI-RS ports. The UE computes at least wideband linear combination coefficients for the selected CSI-RS ports. The UE provides the selected one or more CSI-RS ports and the computed wideband linear combination coefficients to a base station (BS) in a CSI report.
Abstract:
Methods, systems, and devices for wireless communications are described. An encoding device may encode a set of source symbols using one or more raptor codes to generate a first set of encoded symbols and may transmit the first set of encoded symbols to a decoding device. The decoding device may successfully recover a source symbol of the set of source symbols from the first set of encoded symbols and may transmit an indication of the source symbol to the encoding device. The encoding device may encode one or more source symbols of the set of source symbols using the one or more raptor codes to generate a second set of encoded symbols based on receiving the indication of the source symbol and may transmit the second set of encoded symbols to the decoding device.