Abstract:
The present technique relates to an earhole-wearable sound collection device, a signal processing device, and a sound collection method for realizing sound collection at a high S/N ratio, with noise influence being reduced not by a noise reduction process.In the earhole-wearable sound collection device, a microphone that collects emitted speech voice is provided in a space that is substantially sealed off from outside and connects to an ear canal of the wearer (the speaker). With the microphone being located in the space sealed off from outside, emitted speech voice that propagates through the ear canal of the wearer is collected. In a sound collection signal obtained through the ear canal, the emitted speech voice component is dominant over the noise component particularly at low frequencies. Therefore, the S/N ratio of an emitted speech voice collection signal can be improved by extracting the low-frequency component of the sound collection signal with the use of a LPF, for example. Alternatively, an equalizing process for reducing muffled sound that is generated when sound is collected through the ear canal is performed on the sound collection signal. As a result, higher sound quality can be achieved.
Abstract:
The present technique relates to an earhole-wearable sound collection device, a signal processing device, and a sound collection method for realizing sound collection at a high S/N ratio, with noise influence being reduced not by a noise reduction process.In the earhole-wearable sound collection device, a microphone that collects emitted speech voice is provided in a space that is substantially sealed off from outside and connects to an ear canal of the wearer (the speaker). With the microphone being located in the space sealed off from outside, emitted speech voice that propagates through the ear canal of the wearer is collected. In a sound collection signal obtained through the ear canal, the emitted speech voice component is dominant over the noise component particularly at low frequencies. Therefore, the S/N ratio of an emitted speech voice collection signal can be improved by extracting the low-frequency component of the sound collection signal with the use of a LPF, for example. Alternatively, an equalizing process for reducing muffled sound that is generated when sound is collected through the ear canal is performed on the sound collection signal. As a result, higher sound quality can be achieved.
Abstract:
A signal processing device includes a noise analysis unit for analyzing a frequency component of a noise signal obtained by converting a collected sound into an electrical signal, a plurality of filtering units for carrying out predetermined filtering operations on the noise signal on the basis of an analysis result, and an output control unit for temporally varying a synthesis rate of outputs of the plurality of filtering units according to a change in the analysis result of the noise analysis unit. When the analysis result of the noise analysis unit changes, one filtering unit starts a predetermined filtering operation by characteristics different from those of other filtering units that carry out predetermined filtering operations on the noise signal according to the change in the analysis result of the noise analysis unit.
Abstract:
There is provided a signal processing device s including a noise cancellation process clock generation unit configured to generate a noise cancellation process clock having a predetermined fixed frequency, a noise canceling unit configured to include a noise canceling filter operating based on the noise cancellation process clock and generating a noise canceling signal having a signal property of canceling an external noise component based on an input audio signal including the external noise component picked up by a microphone, and an addition unit superimposing the noise canceling signal generated by the filter on a digital audio signal, and a sampling rate conversion unit configured to rate-convert the input digital audio signal sampled at a clock in asynchrony with the noise cancellation process clock to a signal at a sampling frequency in synchrony with the noise cancellation process clock and to supply the rate-converted signal to the addition unit.
Abstract:
An information processing system including a recognizing unit configured to recognize a given target on the basis of signals detected by a plurality of sensors arranged around a specific user, an identifying unit configured to identify the given target recognized by the recognizing unit, an estimating unit configured to estimate a position of the specific user in accordance with the a signal detected by any one of the plurality of sensors, and a signal processing unit configured to process signals acquired from sensors around the given target identified by the identifying unit in a manner that, when output from a plurality of actuators arranged around the specific user, the signals are localized near the position of the specific user estimated by the estimating unit.
Abstract:
Provided is a control apparatus including a detector configured to detect current position information, a setting part configured to set information-for-recognition that varies depending on position information, a recognition part configured to recognize a given target shown by the information-for-recognition set by the setting part in accordance with the current position information detected by the detector, and a controller configured to control at least one of an imaging part and a sound pick-up part in accordance with a recognition result obtained by the recognition part.
Abstract:
An information processing apparatus includes a parameter input unit configured to input parameter information for setting an operating state of a target apparatus, an image conversion unit configured to generate conversion image data by imaging the parameter information, and a setting file image generation unit configured to generate setting file image data where the conversion image data is placed in image data having a larger image size than the conversion image data.
Abstract:
There is provided a display control system including a plurality of display units, an imaging unit configured to capture a subject, a predictor configured to predict an action of the subject according to a captured image captured by the imaging unit, a guide image generator configured to generate a guide image that guides the subject according to a prediction result from the predictor, and a display controller configured to, on the basis of the prediction result from the predictor, select a display unit capable of displaying an image at a position corresponding to the subject from the plurality of display units, and to control the selected display unit to display the guide image at the position corresponding to the subject.
Abstract:
To provide a mechanism for selectively taking an external sound from an appropriate sound source into an internal space of a moving object. An information processing apparatus including an acquisition unit configured to acquire an audio signal from a sound source existing outside a moving object, a generation unit configured to generate an audio signal from a target sound source at a distance from the moving object, the distance being a distance according to a speed of the moving object, of the sound sources, on the basis of the audio signal acquired by the acquisition unit, and an output control unit configured to output the audio signal generated by the generation unit toward an internal space of the moving object.
Abstract:
The present technology relates to a signal processing apparatus and method that are capable of reproducing sound at an optional listening position with a high sense of reality. The signal processing apparatus includes a rendering unit that generates reproduction data of sound at an optional listening position in a target space on the basis of recording signals of microphones attached to a plurality of moving bodies in the target space. The present technology can be applied to a reproduction apparatus.