Abstract:
A method for producing three-dimensional parts, which includes printing the three-dimensional parts and associated support structures onto soluble build sheets, marking each three-dimensional part with information relating to the three-dimensional part, and removing the associated support structures and the soluble build sheets from the printed three-dimensional parts with an aqueous solution using a support removal process. The markings remain applied to the three-dimensional parts after the support removal process, and preferably do not detract from aesthetic qualities of the three-dimensional parts.
Abstract:
A method for printing a three-dimensional part in an additive manufacturing process, which includes calculating surface plane angles relative to one or more of the coordinate axes as a function of surface area of the surface geometry, calculating a build score for each coordinate axis as a function of the calculated surface plane angles, and selecting an orientation for the digital model in the coordinate system based at least in part on the calculated build scores. The build scores preferably predict which part orientations are likely to provide good surface quality for the printed three-dimensional part.
Abstract:
A method for printing three-dimensional parts with an additive manufacturing system, comprising printing successive layers having increasing cross-sectional areas, and printing layers of a three-dimensional part onto the previously printed layers, where a last layer of the previously printed successive layers has a cross-sectional area that is at least as large as a footprint area of the three-dimensional part.
Abstract:
A liquefier assembly for use in an extrusion-based additive manufacturing system, the liquefier assembly comprising a downstream portion having a first average inner cross-sectional area, and an upstream having a second average inner cross-sectional area that is less than the first inner cross-sectional area, the upstream portion defining a shoulder configured to restrict movement of a melt meniscus of a consumable material.
Abstract:
An automated support cleaning system comprising a tank disposed within a housing and configured to circulate an aqueous cleaning solution to remove a support structure from a three-dimensional model.
Abstract:
A liquefier assembly for use in an extrusion-based additive manufacturing system, the liquefier assembly comprising a downstream portion having a first average inner cross-sectional area, and an upstream having a second average inner cross-sectional area that is less than the first inner cross-sectional area, the upstream portion defining a shoulder configured to restrict movement of a melt meniscus of a consumable material.
Abstract:
A liquefier assembly for use in an additive manufacturing system, which includes a rigid member having a gap, a liquefier tube operably disposed in the gap, one or more heater assemblies disposed in the gap in contact with the liquefier tube, and configured to heat the liquefier tube in a zone-by-zone manner, preferably one or more thermal resistors disposed in the gap between the rigid member and the heater assemblies, and preferably one or more sensors configured to operably measure pressure within the liquefier tube. The one or more heater assemblies may be operated to provide dynamic heat flow control.
Abstract:
A ribbon liquefier comprising an outer liquefier portion configured to receive thermal energy from a heat transfer component, and a channel at least partially defined by the outer liquefier portion, where the channel has dimensions that are configured to receive the ribbon filament, and where the ribbon liquefier is configured to melt the ribbon filament received in the channel to at least an extrudable state with the received thermal energy to provide a melt flow. The dimensions of the channel are further configured to conform the melt flow from an axially-asymmetric flow to a substantially axially-symmetric flow in an extrusion tip connected to the ribbon liquefier.
Abstract:
An additive manufacturing system comprising a platen assembly configured to restrain and release a film, a head gantry configured to retain a print head for printing a three-dimensional part on the restrained film, and a removal assembly configured to draw the film having the printed three-dimensional part from the platen assembly and to cut the drawn film.
Abstract:
A coil assembly comprising a coil of a strand-based material retained in a figure-8 configuration, and having an inner layer and an outer layer, where the inner layer of the coil defines a core region of the coil, and where the coil is configured to unwind loop by loop beginning from the inner layer and moving towards the outer layer as the strand-based material is drawn through a payout hole. The coil assembly also comprises a permeable hub configured to reduce payout entanglement of the strand-based material.