Abstract:
Disclosed is a 5G or pre-5G communication system for supporting a data transmission rate higher than that of a 4G communication system such as LTE. According to an embodiment of the present invention, a method for reporting channel state information of a terminal in a wireless communication system comprises the steps of: determining whether a resource for transmitting a reference signal for channel measurement overlaps with a resource for a specific type of transmission; generating channel state information on the basis of the determination result; and transmitting the generated channel state information to a base station.
Abstract:
Disclosed are a communication method for merging, with an IoT technology, a 5G communication system for supporting a data transmission rate higher than that of a 4G system, and a system therefor. The present disclosure can be applied to an intelligent service (for example, smart home, smart building, smart city, smart car or connected car, healthcare, digital education, retail business, security and safety-related services, and the like) on the basis of a 5G communication technology and an IoT-related technology. The present embodiment provides a method and an apparatus for a delay reduction mode operation of a base station and a terminal, and the base station of the present invention can: transmit, to the terminal, first information related to hybrid ARQ (HARQ) timing by means of higher layer signaling; transmit, to the terminal, scheduling information and second information related to the HARQ timing; transmit, to the terminal, data scheduled by the scheduling information; and receive, from the terminal, positive reception acknowledgement or negative reception acknowledgement (ACK/NACK) information with respect to the data according to the HARQ timing, which is determined on the basis of the first information and the second information.
Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. The present invention is a method by which a base station transmits a signal in a wireless communication system for efficiently performing an initial access procedure of a terminal, the method comprising the steps of: generating the synchronization signal on a basis of subcarrier spacing used in the synchronization signal; and transmitting the synchronization signal to the terminal.
Abstract:
The disclosure relates to a communication technique for convergence of a 5G communication system for supporting a higher data transmission rate beyond a 4G system with an IoT technology, and a system therefor. The t disclosure may be applied to an intelligent service (for example, smart home, smart building, smart city, smart car or connected car, health care, digital education, retail business, security- and safety-related service, etc.) on the basis of a 5G communication technology and an IoT-related technology. A method in a wireless communication system is provided. The method includes transmitting channel state information reference signal (CSI-RS) configuration information to a terminal, the CSI-RS configuration information used for a CSI-RS resource set which includes a plurality of CSI-RS resources and information on CSI-RS repetition, transmitting a plurality of CSI-RSs based on the CSI-RS configuration information to the terminal, and receiving feedback information from the terminal, wherein the information on CSI-RS repetition indicates whether the plurality of CSI-RSs are transmitted based on a same transmission beam repetitively.
Abstract:
A communication method and a system for converging a fifth generation (5G) communication system for supporting higher data rates beyond a fourth generation (4G) system with an internet of things (IoT) technology are provided. The disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as a smart home, a smart building, a smart city, a smart car, a connected car, health care, digital education, smart retail, security and safety services. The method includes transmitting, to a terminal, configuration information for configuring a plurality of bandwidth parts for the terminal, wherein at least one control resource set is configured for each of the plurality of bandwidth parts, respectively, transmitting, to the terminal, information for changing a first bandwidth part activated for the terminal to a second bandwidth part, and transmitting, to the terminal, downlink control information in at least one control resource set corresponding to the second bandwidth part.
Abstract:
A method for configuring a flow-based quality of service (QoS), configuring a bearer-based QoS, and introducing a new layer above a packet data convergence protocol (PDCP) layer in order to process the flow-based QoS are provided. An operation of the PDCP layer to support the new layer is also provided. The disclosure relates to a communication method and system for converging a fifth generation (5G) communication system for supporting higher data rates beyond a fourth generation (4G) system with an Internet of things (IoT) technology. The disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car or connected car, health care, digital education, smart retail, security and safety services.
Abstract:
A communication technique is provided for converging a 5the generation (5G) communication system for supporting higher data rates beyond a 4th generation (4G) system with an Internet of things (IoT) technology. The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car or connected cars, health care, digital education, smart retail, security and safety services. A method for receiving channel state information (CSI) according to an embodiment of the present disclosure includes transmitting configuration information on hybrid CSI, the configuration information including configuration on two enhanced multiple input multiple output (eMIMO) types and first information indicating for which an eMIMO type a CSI reporting is triggered transmitting second information triggering the CSI reporting, and receiving the CSI based on the second information and configuration information, and wherein the CSI is associated with the eMIMO type indicated by the first information.
Abstract:
The present disclosure relates to a communication method and system for converging a 5th-Generation (5G) communication system for supporting higher data rates beyond a 4th-Generation (4G) system with a technology for Internet of Things (IoT). The present disclosure may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services. A method and apparatus of a wireless network are disclosed. The method includes transmitting a first request message to request allocation of a multimedia broadcast multicast service (MBMS) group identifier from a service capability server/application server (SCS/AS) to a service capability exposure function (SCEF), the first request message including an external group identifier and an SCS/AS identifier, and receiving a first response message including the MBMS group identifier from the SCEF to the SCS/AS.
Abstract:
Provided is a method, performed by a terminal, for transmitting hybrid automatic repeat request-acknowledgement (HARQ-ACK) information in a wireless communication system, the method including: receiving a first physical downlink shared channel (PDSCH) from a first transmission and reception point (TRP) and receiving a second PDSCH from a second TRP; and transmitting at least one HARQ-ACK codebook including first HARQ-ACK bits for the first PDSCH and second HARQ-ACK bits for the second PDSCH, wherein the first PDSCH and the second PDSCH are joint-transmitted from the first TRP and the second TRP, based on different pieces of downlink control information (DCI).
Abstract:
Methods and apparatuses in a communication system is provided. One or more configurations associated with an aperiodic channel state information (CSI) report are received from a base station via higher layer signaling. Downlink control information (DCI) including a CSI request field indicating a configuration among the one or more configurations is received from the base station. The aperiodic CSI report is transmitted to the base station based on the configuration. In case that a medium access control (MAC) control element (CE) is used to map the configuration to a value of the CSI request field based on a number of the one or more configurations and a size of the CSI request field, the CSI request field indicates the configuration from at least one configuration selected via the MAC CE.