摘要:
A method for fabricating a membrane-electrode assembly, and fuel cells adopting a membrane-electrode assembly formed by the method, wherein the method includes: coating nano-sized catalytic metal particles on a proton exchange polymer membrane by sputtering a catalytic metal source; coating nano-sized carbon particles on the proton exchange polymer membrane by arc discharging or by sputtering a carbon source to form a nanophase catalyst layer; and bonding electrodes to the proton exchange polymer membrane having the nanophase catalyst layer. The nano-sized catalytic metal and nano-sized carbon particles can be coated on a proton exchanger polymer membrane to form a catalyst layer by simultaneously sputtering a catalyst metal source and a carbon source.
摘要:
A power unit, a fuel cartridge, and a fuel cell system having the power unit and the fuel cartridge. The power unit includes a coupling unit to couple with the fuel cartridge. The coupling unit includes a nozzle that receives fuel supplied from the fuel cartridge, a selection key to selectively mate with the fuel cartridge, and an outer unit surrounding the nozzle. An end of the nozzle is located between the selection key and an end of the outer unit.
摘要:
A microporous thin film, a method of forming the same and a fuel cell including the microporous thin film, are provided. The microporous thin film includes uniform nanoparticles and has a porosity of at least about 20%. Therefore, the microporous thin film can be efficiently used in various applications such as fuel cells, primary and secondary batteries, adsorbents, and hydrogen storage alloys. The microporous thin film is formed on a substrate, includes metal nanoparticles, and has a microporous structure with porosity of 20% or more.
摘要:
A fuel cell for a microcapsule-type robot uses alcohol or an aqueous alcohol solution as a fuel and was hydrogen peroxide or an aqueous hydrogen peroxide solution as an oxidizing agent. A microcapsule-type robot also uses the fuel cell. The fuel cell may be used in a microcapsule-type endoscope and have an operating time that is long enough to diagnose human organs. The fuel cell may comprise hydrogen peroxide as an oxidizing agent instead of air or oxygen such that the fuel cell can operate inside the human body. Thus, an oxygen source, which cannot be obtained in a human body, can be easily supplied to the fuel cell, and the fuel cell has higher performance than a fuel cell in which air is used as an oxidizing agent.
摘要:
A liquid fuel cartridge and a direct liquid feed fuel cell system having the liquid fuel cartridge. The direct liquid feed fuel cell system includes: a housing having a cartridge inserting groove and a longitudinal opening in the cartridge inserting groove; a fuel cell located in the housing and composed of cathode and anode electrodes and an electrolyte membrane; a liquid fuel cartridge that contains a liquid fuel, inserted into the cartridge inserting groove, to supply the liquid fuel to the anodes; and a fuel transport unit to transport the liquid fuel from the liquid fuel cartridge to the anodes, wherein the liquid fuel is supplied to the fuel transport unit when the liquid fuel cartridge is rotated in a first direction and the supply of the liquid fuel is disconnected when the liquid fuel cartridge is rotated in an opposite direction.
摘要:
A multiblock copolymer includes a polysulfone repeating unit, a sulfonated polysulfone repeating unit and an ethylenic unsaturated group at a terminal of the multiblock copolymer. Also provided are a method of preparing the multiblock copolymer, a polymer electrolyte membrane prepared from the multiblock copolymer, a method of preparing the polymer electrolyte membrane, and a fuel cell including the polymer electrolyte membrane. The polymer electrolyte membrane that has a high ionic conductivity and good mechanical properties and minimizes crossover of methanol can be manufactured at low cost. In addition, the structure of the multiblock copolymer can be varied to increase selectivity to a solvent used in a polymer electrolyte membrane.
摘要:
A power unit, a fuel cartridge, and a fuel cell system having the power unit and the fuel cartridge. The power unit includes a coupling unit to couple with the fuel cartridge. The coupling unit includes a nozzle that receives fuel supplied from the fuel cartridge, a selection key to selectively mate with the fuel cartridge, and an outer unit surrounding the nozzle. An end of the nozzle is located between the selection key and an end of the outer unit.
摘要:
A bipolar plate and a fuel cell using the same are provided. The bipolar plate includes a flow field that has a length between three and eight times greater than the square of the area of the bipolar plate. The fuel cell includes a first bipolar plate in which a fuel flow field having a length that is between three and eight times greater than the square of the area of the first bipolar plate is formed, and a second bipolar plate in which an air flow field having a length that is between three and eight times greater than the spare of the area of the second bipolar plate is formed. The fuel cell has a lower, uniform internal pressure and can produce a greater power.
摘要:
A method for fabricating a membrane-electrode assembly, and fuel cells adopting a membrane-electrode assembly formed by the method, wherein the method includes: coating nano-sized catalytic metal particles on a proton exchange polymer membrane by sputtering a catalytic metal source; coating nano-sized carbon particles on the proton exchange polymer membrane by arc discharging or by sputtering a carbon source to form a nanophase catalyst layer; and bonding electrodes to the proton exchange polymer membrane having the nanophase catalyst layer. The nano-sized catalytic metal and nano-sized carbon particles can be coated on a proton exchanger polymer membrane to form a catalyst layer by simultaneously sputtering a catalyst metal source and a carbon source.
摘要:
A catalyst coated electrolyte membrane including an anode catalyst layer and a cathode catalyst layer at opposite sides thereof, respectively, wherein micro cracks of the anode catalyst layer or cathode catalyst layer occupy 0.01-1 area % of the total area of the respective anode catalyst layer or cathode catalyst layer, a fuel cell including the same, and a method of preparing the catalyst coated electrolyte membrane. In the catalyst coated electrolyte membrane, micro cracks of the cathode catalyst layer or the anode catalyst layer can be minimized and thus the resistance between the electrode catalyst layer and an electrolyte membrane can be minimized, and crossover of a fuel, such as methanol, ethanol, other alcohols, methane, etc., to a cathode electrode can be minimized, and thus the catalyst coated electrolyte membrane has improved performance and durability.