摘要:
A method is disclosed for fabricating an integrated circuit in a replacement-gate process flow utilizing a dummy-gate structure overlying a plurality of fin structures. The method includes removing the dummy-gate structure to form a first void space, depositing a shaper material to fill the first void space, removing a portion of the plurality of fin structures to form a second void space, epitaxially growing a high carrier mobility material to fill the second void space, removing the shaper material to form a third void space, and depositing a replacement metal gate material to fill the third void space.
摘要:
A semiconductor device having raised source and drain regions is formed by forming a gate electrode structure on a semiconductor substrate, forming a first spacer structure laterally to the gate electrode structure, forming a semiconductor layer over an exposed surface of the semiconductor substrate at both sides of the gate electrode structure such that a layer portion is formed which is beveled towards the gate electrode with regard to the exposed surface of the semiconductor substrate, and forming a second spacer structure over the first spacer structure, wherein the second spacer structure covers at least a portion of the beveled layer portion.
摘要:
Apparatus and related fabrication methods are provided for semiconductor device structures having silicon-encapsulated stressor regions. One method for fabricating a semiconductor device structure involves the steps of forming a gate structure overlying the semiconductor substrate, forming recesses in the semiconductor substrate about the gate structure, forming a stress-inducing semiconductor material in the recesses, and forming a silicon material in the recesses overlying the stress-inducing semiconductor material. In an exemplary embodiment, the silicon material formed in the recesses is epitaxially-grown on the stress-inducing semiconductor material.
摘要:
Embodiments of a strained semiconductor device are provided, as are embodiments of a method for fabricating such a strained semiconductor device. In one embodiment, the method includes providing a partially-fabricated semiconductor device including a semiconductor substrate having a source side and a drain side, a gate stack formed on the semiconductor substrate, and a channel region formed within the semiconductor substrate beneath the gate stack and extending from the source side to the drain side of the semiconductor substrate. A cavity is produced in only one of the source side and the drain side of the semiconductor substrate, and a strain-inducing material is formed within the cavity to create an asymmetric heterojunction structure within the semiconductor substrate.
摘要:
In one example, a method disclosed herein includes the steps of forming a gate structure for a first transistor and a second transistor above a semiconducting substrate, forming a liner layer above the gate structures and performing a plurality of extension ion implant processes through the liner layer to form extension implant regions in the substrate for the first transistor and the second transistor. The method further includes forming a first sidewall spacer proximate the gate structure for the first transistor and a patterned hard mask layer positioned above the second transistor, performing at least one etching process to remove the first sidewall spacer, the patterned hard mask layer and the liner layer, forming a second sidewall spacer proximate both of the gate structures and performing a plurality of source/drain ion implant processes to form deep source/drain implant regions in the substrate for the first transistor and the second transistor.
摘要:
Generally, the present disclosure is directed to various methods of making a semiconductor device by implanting hydrogen or hydrogen-containing clusters to improve the interface between a gate insulation layer and the substrate. One illustrative method disclosed herein involves forming a gate insulation layer on a substrate, forming a layer of gate electrode material above the gate insulation material and performing an ion implantation process with a material comprising hydrogen or a hydrogen-containing compound to introduce the hydrogen or hydrogen-containing compound proximate an interface between the gate insulation layer and said substrate with a concentration of the implanted hydrogen or hydrogen-containing compound being at least 1e10 ions/cm2.
摘要翻译:通常,本公开涉及通过注入氢或含氢簇来改善栅极绝缘层和衬底之间的界面来制造半导体器件的各种方法。 本文公开的一种说明性方法包括在衬底上形成栅极绝缘层,在栅极绝缘材料上方形成栅极材料层,并用含有氢或含氢化合物的材料进行离子注入工艺以引入氢或氢 邻近于栅极绝缘层和所述衬底之间的界面,其中所注入的氢或含氢化合物的浓度为至少1e 10离子/ cm 2。
摘要:
A method for fabricating a stress enhanced CMOS circuit includes forming a first plurality of MOS transistors at a first pitch and forming a second plurality of MOS transistors at a second pitch. The second pitch is larger than the first pitch. The method further includes depositing a single stress liner overlying the first and second plurality of MOS transistors. The single stress liner is the only stress liner deposited in the fabrication of the stress enhanced CMOS circuit. A stress enhanced CMOS circuit includes a first plurality of MOS transistors formed at a first pitch and a second plurality of MOS transistors formed at a second pitch. The second pitch is larger than the first pitch. The circuit further includes a single stress liner overlying the first and second plurality of MOS transistors. The single stress liner is the only stress liner formed on the stress enhanced CMOS circuit.
摘要:
Embodiments of a method for producing an integrated circuit are provided, as are embodiments of an integrated circuit. In one embodiment, the method includes providing a strained substrate having an n-active region and a p-active region, etching a cavity into one of the n-active region and the p-active region, embedding a relaxed buffer layer within the cavity, forming a body of strain material over the relaxed buffer layer having a strain orientation opposite that of the strained substrate, and fabricating n-type and t-type transistors over the n-active and p-active regions, respectively. The channel of the n-type transistor extends within one of the strained substrate and the body of strain material, while the channel of the p-type transistor extends within the other of the strained substrate and the body of strain material.
摘要:
Embodiments of a method for fabricating an integrated circuit are provided. In one embodiment, the method includes producing a partially-completed semiconductor device including a substrate, source/drain (S/D) regions, a channel region between the S/D regions, and a gate stack over the channel region. At least one raised electrically-conductive structure is formed over at least one of the S/D regions and separated from the gate stack by a lateral gap. The raised electrically-conductive structure is then back-etched to increase the width of the lateral gap and reduce the parasitic fringing capacitance between the raised electrically-conductive structure and the gate stack during operation of the completed semiconductor device.
摘要:
Embodiments of a method for producing an integrated circuit are provided, as are embodiments of an integrated circuit. In one embodiment, the method includes providing a strained substrate having an n-active region and a p-active region, etching a cavity into one of the n-active region and the p-active region, embedding a relaxed buffer layer within the cavity, forming a body of strain material over the relaxed buffer layer having a strain orientation opposite that of the strained substrate, and fabricating n-type and t-type transistors over the n-active and p-active regions, respectively. The channel of the n-type transistor extends within one of the strained substrate and the body of strain material, while the channel of the p-type transistor extends within the other of the strained substrate and the body of strain material.