摘要:
Techniques for reliable channel decoding in a wireless network are provided. In one aspect, a wireless device receives system information over a physical broadcast channel of a downlink transmission. The wireless device decodes the physical broadcast channel of a current radio frame using a plurality of hypotheses until the decoding passes a cyclic redundancy check. Thereafter, the wireless device compares system information from the current radio frame with information obtained from a previous radio frame. The information from the previous radio frame may include one or more network parameters which may be stored in a memory of the wireless device. In some aspects, the comparison may be performed over a plurality of radio frames. Based at least in part on a result of the comparing, the wireless device may selectively reject system information from one or more of the radio frames.
摘要:
Obtaining a timing reference in wireless communication is facilitated when desiring to communicate with a weak serving base station (such as an evolved NodeB) in the presence of a stronger interfering base station. The user equipment (UE) may track a stronger interfering base station's timing, or the UE may track a timing that is derived by a composite power delay profile (PDP) from multiple base stations. The composite PDP may be constructed by adjusting individual base station PDPs according to a weighting scheme. The timing obtained in such a manner may be used for estimation of the channel of the interfering base station and cancelling interfering signals from the base station. It may also be used to estimate the channel of the serving base station after adding a backoff. The UE may track a stronger interfering base station's frequency, or the UE may track a composite frequency.
摘要:
A method to enhance coverage and/or throughput in a heterogeneous wireless network includes detecting interference between a neighboring cell and a serving cell. The method also includes cancelling the interference using an adaptive technique based on whether the interference has colliding Common Reference Signal (CRS) tones.
摘要:
Communication in a dominant interference scenario may be supported by performing inter-cell interference coordination (ICIC). According to certain aspects of ICIC, resource coordination/partitioning may be performed to allocate resources to a serving Node B located near the vicinity of a strong interfering Node B. The interfering Node B may avoid transmitting on the allocated/protected resources, but transmissions from the interfering Node B on resources not allocated to the serving Node B (i.e., unprotected) may cause significant interference on cell-specific reference signal (CRS) tones of the serving Node B. Therefore, if the CRS tones of the unallocated/unprotected resources are used, performance degradation may result to various operations of the serving Node B. Therefore, certain aspects of the present disclosure provide techniques for a UE receiver in utilizing resource partitioning information (RPI) for performing CRS processing in a heterogeneous network (HetNet).
摘要:
Techniques for reporting channel information are described. In one aspect, a plurality of channel information reporting modes are available to a user equipment (UE) for reporting channel information for coordinated multi-point (CoMP) data transmission. The UE may determine a first channel information reporting mode to use, determine first channel information related to at least one cell in a CoMP measurement set of the UE, and send the first channel information in accordance with the first channel information reporting mode to one or more cells in the CoMP measurement set. The UE may also determine a second channel information reporting mode to use, determine second channel information related to multiple cells in the CoMP measurement set, and send the second channel information in accordance with the second channel information reporting mode. A plurality of channel feedback configurations may be supported, including a single-stage, a two-stage, and/or a one-shot channel configurations.
摘要:
In order to cancel any interference due to the second cell signal (e.g., from a non-serving cell) from a signal received at a UE, without receiving additional control information, the UE blindly estimates parameters associated with decoding the second cell signal. This may include determining a metric based on sets of symbols associated with the cell signals in order to determine parameters for the second cell signal, e.g., the transmission mode, modulation format, and/or spatial scheme of the second cell signal. The parameters for the signal may be determined based on a comparison of the metric with a threshold. When a spatial scheme and a modulation format is unknown, the blind estimation may include determining a plurality of constellations of possible transmitted modulated symbols associated with a potential spatial scheme and modulation format combination. Interference cancellation can be performed using the constellations and a corresponding probability weight.
摘要:
In a wireless communication system, interference on data tones is estimated by detecting data transmissions from interferers. An overall interference covariance matrix is estimated as a function of scalar traffic to pilot ratio (TPR) estimates, residual interference covariance estimates, and covariance of channel estimates of dominant interferers. The interference estimates are refined as a function of reliability based on a ratio of power received from a serving cell and power received from a dominant interferer.
摘要:
Interference on pilot signals and on data tones can be mismatched. Different types of interference estimates perform differently based on how the mismatch occurs. The resulting interference estimate may thus be inaccurate. Interference estimates based on pilot signals and also on data tones can both be evaluated for reliability. The more reliable of the two can then be selected. If the data tones estimate is selected, the estimate can be calculated from covariance matrices or from traffic-to-pilot ratios.
摘要:
A method of wireless communication includes receiving physical layer signaling from a serving eNodeB in a wireless network. Interference estimation, interference cancellation and/or spatial equalization of user equipment is controlled in accordance with the received signaling.
摘要:
Communication in a dominant interference scenario may be supported by performing inter-cell interference coordination (ICIC). Resource coordination/partitioning may be performed to allocate resources to a serving Node B located near the vicinity of a strong interfering Node B. The interfering Node B may avoid transmitting on the allocated/protected resources, possibly except for a common reference signal (CRS). A UE can then communicate with the serving Node B on the protected resources in the presence of the interfering Node B and may observe no interference (possibly except for the CRS) from the interfering Node B. When CRS tones of an interferer may collide with control/data tones of a serving cell, CRS interference cancellation (CRS IC) or puncturing of interfered resource elements (REs) may be appropriate. Certain aspects of the present disclosure provide techniques, where the UE may dynamically switch between CRS IC and RE puncturing based on certain parameters.