Abstract:
Briefly, in accordance with a preferred embodiment of the present principles, simulation of a block of film grain for addition to a block of an image occurs by first establishing at least one image parameter in accordance with at least one attribute of the block. Thereafter, a block of film grain is established in accordance with the image parameter. Deblocking filtering can be applied to the film grain block.
Abstract:
A method and apparatus are provided for reversible, polynomial based image scaling. The apparatus includes a video scaler for performing image scaling from a first base resolution image to a higher resolution image, and from the higher resolution image to a second base resolution image. The first and the second base resolution images are equal on a pixel-by-pixel basis for an entirety of the first and the second base resolution images. A scaling function used for the image scaling is based on a polynomial function having two or more degrees.
Abstract:
Film grain simulation within a receiver 4 occurs by first obtaining at least one block of pre-computed transformed coefficients. The block of pre-computed transformed coefficients undergoes filtering responsive to a frequency range that characterizes a desired pattern of the film grain. In practice, the frequency range lies within a set of cut frequencies fHL, fVL, fHH and fVH of a filter in two dimensions that characterizes a desired film grain pattern. Thereafter, the filtered set of coefficients undergoes an inverse transform to yield the film grain pattern.
Abstract translation:通过首先获得至少一个预先计算的变换系数块,发生接收机4内的胶片颗粒模拟。 预先计算的变换系数的块根据表征胶片颗粒的期望图案的频率范围进行滤波。 在实践中,频率范围在一组切割频率f LF,f V L,f H HH和f V H, SUB>滤光器,其特征在于所需的胶片颗粒图案。 此后,经滤波的系数组经过逆变换以产生胶片颗粒图案。
Abstract:
Film grain is simulated in an output image using pre-established blocks of film grain from a pool of pre-established blocks. Successive film grain blocks are selected by matching the average intensity of a block from the pool to the average intensity of a successive one of a set of M×N pixels in an incoming image. Once all of the successive pixel blocks from the image are matched to selected film grain blocks, the selected film grain blocks are “mosaiced”, that is composited into a larger image mapped to the incoming image.
Abstract:
Simulation of film grain in an image can occur by compressing a video image, then transmitting compressed video together with a message containing at least one parameter indicative of the original film grain, to a decoder, and restoring the original grainy appearance of images by having the decoder simulating film grain based on the content of the film grain message. To improve efficiency, one or more parameters of film grain information undergo scaling in accordance with a target pixel block size for pixel blocks in the image. Such scaling allows for the use of conventional circuitry for performing block-based operations in connection with the film grain simulation.
Abstract:
Simulation of a block of film grain for addition to a block of an image occurs by first establishing at least one parameter at least in part in accordance with an attribute of the image block At least one at least one block of film grain is simulated from at least one film grain pattern generated in accordance with the at least one parameter. In particular, the film grain pattern is generated using a bit accurate technique.
Abstract:
A method of operating a high dynamic range display device comprises the steps of: accessing an image signal; generating an intermediate backlighting driver signal for individual backlight elements for a backlighting unit responsive to the image signal; convoluting the intermediate backlighting driver signals with a point spread function of the backlighting unit; deriving at least one new backlighting driver signal responsive to the convoluting step; determining display error associated with a plurality of available light shutter signals of a front-end unit having individual light shutters and associated with the at least one new backlighting driver signal, the front-end unit having a higher resolution than the backlighting unit; driving the display device with a combination of shutter signals and new backlighting driver signals that causes a reduction in the display error with respect to other generated intermediate backlighting driver signals and other available light shutter signals.
Abstract:
A method and apparatus are disclosed and described for providing bit rate configuration for multi-view video coding. In the video encoder, the method includes encoding image data for at least one picture for at least two joint views of multi-view video content, the at least two joint views including a base view and at least one dependent view. The bit rate configuration for encoding the image data is determined to include an average bit rate and a maximum bit rate for the base view and the average bit rate and the maximum bit rate for the at least two joint views (235, 215, 220).
Abstract:
A method and apparatus are disclosed and described for providing hypothetical reference decoder conformance error detection. The apparatus includes a multi-pass encoder (200) for encoding pictures in a video sequence. The pictures are encoded in a first pass to determine a bit consumption of each picture, and a bit allocation is controlled during the encoding of the pictures in at least a second pass responsive to satisfying requirements for a subsequent decoding of the bitstream. The requirements relate to preventing at least one of underflow and overflow conditions in a buffer during the subsequent decoding. The bit allocation is based on the bit consumption determined in the first pass and buffer parameters. The pictures are encoded in at least the first and second passes into a plurality of bitstreams on a scene-basis such that any of the pictures belonging to a same scene are respectively encoded in a same one of the bitstreams.
Abstract:
Methods and apparatuses for data pruning for video compression using example-based super resolution are provided. A method and apparatus for encoding is provided in which patches of video are extracted from input video, grouped together using a clustering method, and representative patches are packed into patch frames. The original video is downsized and sent either along with, or in addition to, the patch frames. At a decoder, the method and apparatus provided extract patches from the patch frames and create a patch library. The regular video frames are upsized and the low resolution patches are replaced by patches from the patch library by searching the library using the patches in the decoded regular frames as keywords. If there are no appropriate patches, no replacement is made. A post processing procedure is used to enhance the spatiotemporal smoothness of the recovered video.