Abstract:
An approach is provided for specifying channel state information in a multi-carrier communication system. A determination of either spectral locations of a first carrier and a second carrier, or correlation between the first carrier and the second carrier is made. A report format among a plurality of report formats is selected based on either the determined correlation or spectral locations. Each of the report formats specifies channel state information for the first carrier and the second carrier. The channel state information includes data rate information.
Abstract:
The present invention concerns methods for efficiently supporting Voice over Internet Protocol (VoIP) on the Forward Packet Data Channel (F-PDCH) in CDMA 2000 1xEV-DV systems. Active speech in VoIP is encoded using, for example enhanced variable rate codec (EVRC), which produces 171, 80 and 16 bits per 20 ms of speech for Rate 1, Rate 1/2 and Rate 1/8, respectively. However, about 60% of the time a user is inactive during a speech session, so an inordinate amount of system bandwidth is comprised of rate 1/8 VoIP packets. In one embodiment of the present invention the apparatus of the present invention identifies the Rate 1/8 voice frame packets and discards them. In another embodiment of the present invention, the apparatus of the present invention identifies the Rate 1/8 voice frame packets and selects some of them for further transmission. In both embodiments the efficiency of channel utilization is increased since the amount of channel band width used to communicate relatively little information, e.g., gaps of silence, is decreased.
Abstract:
A Two-Dimensional (2D) code receiver and transmitter, and methods for their operation in a 2D code communication system, are provided. The method for operating the 2D code receiver includes receiving a sequence of 2D codes from a 2D code transmitter having data encoded therein, wherein the 2D codes of the sequence are received in succession, and decoding the received a sequence of 2D codes into the data.
Abstract:
A method for data transmission. The method including the steps of generating at least one resource tree, mapping a plurality of resource elements into respective leaf nodes in the at least one resource tree according to a certain mapping scheme, with each node in the at least one resource tree representing a resource allocation scheme for data transmission, and transmitting data using a resource allocation scheme selected from among the plurality of resource allocation schemes represented by respective nodes in the at least one resource tree. In response to reception of the data, a receiver decodes the data by recursively applying the plurality of resource allocation schemes represented by respective nodes in the at least one resource tree until the data is decoded.
Abstract:
An apparatus and method for configuring Enhanced Multicast and Broadcast Service (E-MBS) Scheduling Intervals (MSIs) in a communication system are provided. The method includes selecting a number N of MSIs, and selecting a periodicity of each of the N MSIs. By selecting a number N of MSIs and a periodicity of each of the N MSIs, a communication system is able to more efficiently decode E-MBS data.
Abstract:
Methods and apparatus for efficiently feeding back preceding information in a multiple input multiple output (MIMO) system. A codebook including a plurality of codebook entries is constructed. A plurality of subsets of codebook entries are defined for the codebook. Each subset includes a plurality of codebook entries. A subset of codebook entries is selected for precoding data in dependence upon a channel condition, and a codebook entry is selected from the subset. Then, a subset index corresponding to the selected subset, and a codebook entry index corresponding to the selected codebook entry within the selected subset, is transmitted as feedback information.
Abstract:
A wireless communication network is provided. The network comprising a plurality of base stations capable of wireless communication with a plurality of subscriber stations within a coverage area of the network. At least one of the plurality of base stations comprises a transmitter configured to transmit a downlink frame. The downlink frame comprising a first Enhanced Multicast Broadcast Service (E-MBS) MAP. The first E-MBS MAP comprises a field with an indicator to indicate a next E-MBS MAP to be decoded by a subscriber station. The subscriber station, upon decoding the first E-MBS MAP, refrains from decoding subsequent E-MBS MAPS that precede the next E-MBS MAP to be decoded by the subscriber station in accordance with the indicator.
Abstract:
A method and apparatus for coordinating the resource assignment of a plurality of channel segments in a wireless communication system are disclosed. The method includes the steps of determining a number of resources available, determining a number of channel segments to include in a frame, determining a number of resource zones to be used for resource assignment of the plurality of channel segments, assigning each channel segment of the number of channel segments to a resource zone of the number of resource zones, and selecting a resource from the number of resources for transmitting said each channel segment in said resource zone.
Abstract:
A method and apparatus for generating a Cyclic Redundancy Check (CRC) encoded message in a communication system are provided. The method includes generating the message, generating a first CRC for the message, generating a second CRC for the message, scrambling the first CRC by a first bit sequence of the message, and scrambling the second CRC by a second bit sequence of the message. The apparatus includes a message generator, a first CRC encoder, and a second CRC encoder. The message generator generates a message. The first CRC encoder generates a first CRC for the message, and scrambles the first CRC by a first bit sequence of the message. The second CRC encoder generates a second CRC for the message, and scrambles the second CRC by a second bit sequence of the message.
Abstract:
A mobile station capable of accessing a wireless communication network having a plurality of base stations is provided. The mobile station is configured to determine if a battery level of the mobile station is below a selected one of a plurality of power level thresholds. The mobile station is also configured to, upon a determination that the battery level is below the selected power level threshold, send a battery report to a first base station of the wireless communication network. The mobile station is further configured to enter a battery power preservation mode. The battery power preservation mode may include an enhanced idle mode, an enhanced sleep mode, or a persistent allocation mode.