Abstract:
A method for joining a highly electroconductive core element (2) to a jacket element (1) made of refined steel. In said method, the electroconductive core element (2), such as a copper bar, and the joining agent element (3) are inserted in the jacket element (1), and at least the juncture area of the elements to be joined is thermally treated, so that there is created a metallurgical joint between the electroconductive core element (2) and the refined-steel jacket element (1).
Abstract:
A hangar bar for a cathode plate and a method of producing a cathode for electrolytic recovery of metal. The hanger bar comprises a support element which is preferably stainless steel and hollow. An electrically conductive metal cladding is affixed the stainless steel bar by any appropriate mechanism, eg interference fit, welding, chemical or mechanical fastening or coextrusion or roll forming. Affixing the cladding to the stainless steel support element has significant advantages over conventional electroplating techniques including that a more precise engineering specification can be applied to the cladding thickness. This is important to maintain vertical alignment of the cathode plate in the electrolytic cell.
Abstract:
A low temperature alkali metal electrolysis process is provided. The process comprises carrying out the electrolysis in the presence of a co-electrolyte and an alkali metal halide. The co-electrolyte comprises (1) a nitrogen-containing compound and optionally one ore more Group IB halides, Group IIIA halides, Group VIII halides; (2) a Group IIIA halide, a Group VB halide, or combinations of a Group IIIA halide and a Group VB halide; or (3) water. Also provided is a low temperature electrolysis process, which comprises carrying out the process using a cathode that comprises (1) a liquid alkali metal; (2) an alloy of two or more metals selected from the group consisting of bismuth, lead, tin, antimony, indium, gallium, thallium, and cadmium; or (3) an electrically conductive liquid solvated alkali metal. Further provided is an electrolyte comprising an alkali metal halide and a co-electrolyte that comprises (1) a nitrogen-containing compound and optionally one ore more Group IB halides, Group IIIA halides, Group VIII halides or (2) a Group IIIA halide, a Group VB halide, or combinations of a Group IIIA halide and a Group VB halide.
Abstract:
Cathode plate edge protector systems formed by secondary and tertiary molding processes, in which fluid plastic is molded around and/or introduced into previously manufactured plastic edge protectors. A U-shaped edge protector system is formed by bevel-cutting abutting ends of edge protector strips, securing the strips in the desired configuration a molding jig, and molding corner pieces around the abutting ends. The system is then removed from the jig and slip-installed over the two sides and the bottom edge of a cathode plate. In an optional tertiary molding process, fluid plastic may be introduced into the remaining void between the edge protector system and the cathode plate. Another edge protector system is formed by mounting edge protector strips on opposing side edges of a cathode plate, damming the open ends, and introducing fluid plastic in the contained voids between the strips and the cathode plate.
Abstract:
Cathode plate edge protector systems formed by secondary and tertiary molding processes, in which fluid plastic is molded around and/or introduced into previously manufactured plastic edge protectors. A U-shaped edge protector system is formed by bevel-cutting abutting ends of edge protector strips, securing the strips in the desired configuration a molding jig, and molding corner pieces around the abutting ends. The system is then removed from the jig and slip-installed over the two sides and the bottom edge of a cathode plate. In an optional tertiary molding process, fluid plastic may be introduced into the remaining void between the edge protector system and the cathode plate. Another edge protector system is formed by mounting edge protector strips on opposing side edges of a cathode plate, damming the open ends, and introducing fluid plastic in the contained voids between the strips and the cathode plate.
Abstract:
A method for joining a highly electroconductive core element (2) to a jacket element (1) made of refined steel. In said method, the electroconductive core element (2), such as a copper bar, and the joining agent element (3) are inserted in the jacket element (1), and at least the juncture area of the elements to be joined is thermally treated, so that there is created a metallurgical joint between the electroconductive core element (2) and the refined-steel jacket element (1).
Abstract:
The invention is relative to an electrode for gas evolution in electrolytic and electrometallurgical industrial applications, made of a metal substrate having a surface morphology characterized by a combination of micro-roughness and macro-roughness which favors high adherence of a superficial catalytic layer in order to prevent detachment of the same and passivation of the substrate even under critical operating conditions.
Abstract:
The present invention relates to a metal cathode sheet as component of cathode equipment for an electrolysis tank for the electrolytic recovery of pure metals, especially copper. The cathode sheet is provided, at its side edges which come into contact with the electrolyte and are vertically aligned in the electrolysis tank, with an edge protector, made of a ceramic material. The edge protector is electrically insulating, of dense porosity and resistant to electrolyte. Sharp-edged breakthroughs and the outer cathode cutting edges are completely coated by edge protector. In this manner flux line concentrations at these locations are forestalled.
Abstract:
A carbon based material produced from the consolidation of amorphous carbon by elevated temperature compression. The material having unique chemical and physical characteristics that lend themselves to a broad range of applications such as in electrical, electrochemical and structural fields.
Abstract:
The present invention relates to a metal cathode sheet as component of cathode equipment for an electrolysis tank for the electrolytic recovery of pure metals, especially copper. The cathode sheet is provided, at its side edges which come into contact with the electrolyte and are vertically aligned in the electrolysis tank, with an edge protector, made of a ceramic material. The edge protector is electrically insulating, of dense porosity and resistant to electrolyte. Sharp-edged breakthroughs and the outer cathode cutting edges are completely coated by edge protector. In this manner flux line concentrations at these locations are forestalled.