Abstract:
A high-load linear actuator includes a driving mechanism, a worm shaft, a worm wheel assembly, a lead screw, a telescopic pipe and an outer pipe. The driving mechanism includes a base and a motor. The base has a supporting portion and an accommodating portion. The motor is fixed to the supporting portion. The worm shaft extends from the motor into the supporting portion. The worm wheel assembly includes a worm wheel and two bearings for supporting the worm wheel in the accommodating portion. The worm wheel is engaged with the worm shaft. The lead screw is disposed through the worm wheel and driven by the motor for rotation. The telescopic pipe slips on the lead screw to be threadedly connected therewith. The outer pipe slips on the telescopic pipe. The rotation of the lead screw drives the telescopic pipe to linearly extend or retract relative to the outer pipe.
Abstract:
A spring type one-way clutch includes an outer ring rotatable about a rotary shaft and having an inner tubular portion, and a clutch spring mounted in the outer ring. The clutch spring includes a large-diameter coil spring portion, a transition portion connected to the winding end of the large-diameter coil spring portion, and a small-diameter coil spring portion connected to the radially inner end of the transition portion and wound in the opposite direction from the large-diameter coil spring portion. When the outer ring is rotated in the direction opposite the winding direction of the large-diameter coil spring portion, the large- and small-diameter coil spring portions are radially compressed and pressed against the inner tubular portion and the rotary shaft, allowing the rotary shaft to rotate together with the outer ring. The transition portion spirals radially inwardly in the winding direction of the large-diameter coil spring portion.
Abstract:
A decoupler having an output member, a one-way clutch, a spring and a spring limiter. The spring is disposed between an output portion of the one-way clutch and the output member to bias the output portion in a predetermined rotational direction relative to the output member. The spring limiter can be configured to lock an output of the one-way clutch to the output member to transmit rotary power between the one-way clutch and the output member without stressing the spring beyond a predetermined point and/or to limit rotational movement of the output portion and an associated end of the spring relative to the output member in the predetermined rotational direction. A method for operating a decoupler is also provided.
Abstract:
A high-load linear actuator includes a driving mechanism, a worm shaft, a worm wheel assembly, a lead screw, a telescopic pipe and an outer pipe. The driving mechanism includes a base and a motor. The base has a supporting portion and an accommodating portion. The motor is fixed to the supporting portion. The worm shaft extends from the motor into the supporting portion. The worm wheel assembly includes a worm wheel and two bearings for supporting the worm wheel in the accommodating portion. The worm wheel is engaged with the worm shaft. The lead screw is disposed through the worm wheel and driven by the motor for rotation. The telescopic pipe slips on the lead screw to be threadedly connected therewith. The outer pipe slips on the telescopic pipe. The rotation of the lead screw drives the telescopic pipe to linearly extend or retract relative to the outer pipe.
Abstract:
The present invention relates to an automatic door closer including: a main housing having the shape of a cylinder; a damper housing adapted to divide the interior of the main housing into an upper chamber and a lower chamber and having oil charged thereinto and a fixed vane formed at one side of the inner peripheral surface thereof in such a manner as to be projected toward the center thereof; a cover fixedly coupled to the upper periphery of the main housing; an activating shaft having one end extended to the outside through the cover in such a manner as to be rotatably supported and the other end rotatably supported against the bottom surface of the main housing through the damper housing; a rotary vane formed integrally to the outer periphery of the activating shaft so as to divide the interior of the damper housing into first and second chambers, together with the fixed vane; a return spring adapted to provide a returning force of returning the activating shaft to an initial setting position at the time when the door is closed; and damping means adapted to selectively provide a damping function if the activating shaft and the rotary vane are rotated in a closing direction of the door.
Abstract:
A counterbalance system for a tilt-in window that utilizes a brake shoe assembly. The brake shoe assembly is comprised of a brake shoe housing and a cam element. The brake shoe housing has a first arm element, a second arm element, and a flexible bottom section. A cam opening is disposed within the brake shoe housing. A gap space exists above the cam opening. The cam element is disposed within the cam opening. The cam element contains a tilt post receiving slot that received the tilt post from a window sash. A catch finger extends from the first arm element into the gap space. The catch finger at least partially obstructs the tilt post receiving slot. This prevents the tilt post of the window sash from being inadvertently lifted out of the brake shoe assembly.