Abstract:
A modular drive assembly for a sliding door, comprising: a guide track having a hinge slidably received therein; a pair of pulleys disposed on either end of the guide track; a pair of cables each having an end that is secured to the hinge and the other end is secured to a cable drum of a motor drive unit mounted to the guide track, the motor drive unit being configured to rotate the cable drum, wherein the cable drum is also capable of freely rotating within the motor drive unit when the motor drive unit is not rotating the cable drum, wherein rotation of the cable drum causes the hinge to move in the guide track as one of the cables wraps onto the cable drum while the other one of the cables wraps off of the cable drum.
Abstract:
An opening-and-closing device opens and closes a sliding door by using a cable connected to the sliding door movably attached to a vehicle body. The opening-and-closing device has a base bracket, a motor, a transmission, a rotary drum, a first conduit fixed portion, a second conduit fixed portion, a first tension controller and a second tension controller. The base bracket is fixed to the vehicle body with bolts. The motor, the transmission, the rotary drum, the first and second conduit fixed portions and the first and second tension controllers are fixed to a disposition face of the base bracket. The first and second tension controllers are respectively disposed between the rotary drum and the first conduit fixed portion and between the rotary drum and the second conduit fixed portion, and applies tension to the cable fed from the rotary drum to take up the slack.
Abstract:
A window regulator, e.g., for a vehicle window, which includes opposing block and pulley arrangements that interact via a lift pulley (36) mounted to a lift plate (16) that slides along a rail (22). Operative movement of a crank assembly (44) in a first sense tensions a cable (32a) to move the lift plate (16) toward a first end (34a) of the rail (22), and operative movement of the crank assembly (44) in a second sense, opposite the first sense, tensions a cable (32b) to move the lift plate (16) towards a second end (34b) of the rail (22). The regulator enables the reduction of the operating torque requirements without effecting the packaging of the crank assembly.
Abstract:
A cable drive device for moving a vehicle component, such as a vehicle sliding roof, includes a cable that is guided in an endless loop and whose ends of which are wound up on two winding drums that are driven in the same direction. An intermediate section of the cable is looped around a further winding drum, thereby dividing the cable into two branches having entrainment elements provided thereon for engaging the vehicle component to be moved.
Abstract:
A housing structure for a mobile element, such as a regulator drum, includes a dish that covers the housing and a backing plate with an opening large enough to accommodate the mobile element and one or more pliable tongues extending into the opening. The tongues hold the mobile element in the housing while still allowing the element to be removed without dismantling the housing or the element.
Abstract:
A cable drive unit for opening and closing a sliding door on a vehicle (not shown) has a cup-shaped front drum having a helical front cable groove and a rear cup-shaped drum having a helical rear cable groove. The front drum is rotated about a longitudinal axis in a first direction to open the sliding door. The rear drum is partially nested in the front drum and rotated about the longitudinal axis in an opposite direction to close the sliding door. The front drum and the rear drum are drivingly connected to each other via a tension spring that biases the front drum and the rear drum in opposite directions when in tension. The front and rear drums are rotated by a concentric clutch that is nested in the rear drum. The clutch includes a drive member that is drivingly connected to the front drum via a first lost motion connection and drivingly connected to the rear drum via a second lost motion connection. The first drum has an arcuate slot forming part of the first lost motion connection, the rear drum has an arcuate slot forming part of the second lost motion connection, and the drive member has a tab that projects through both arcuate slots to form part of the first lost motion connection and part of the second lost motion connection.
Abstract:
A cable drive assembly for opening and closing a sliding vehicle door has first and second drums that are drivingly connected to each other via a tension spring that biases the drums in opposite directions. The drums include a catch that holds the first and second drums in a cocked condition where the spring is tensioned to provide slack in a closed loop cable to facilitate inserting a traveler attached to the cable into a track. The cocked drums are manually rotated in a drum housing in one direction on to move the traveler and insert it into the track. After the traveler is inserted, the cocked drums are manually rotated in the opposite direction. This releases the catch so that the tensioned spring takes up the slack in the closed loop cable.
Abstract:
A control method of a powered sliding device for a vehicle sliding door, wherein when an operating switch for starting a powered sliding device is pressed to open the door, and if the vehicle speed is about 3 km/h or less and the foot brake or the parking brake is operated, the decelerating state of the vehicle just before is confirmed, and when the decelerating state does not correspond to the quick braking, the powered sliding device is started.
Abstract:
A device for urging a door into a first position includes a spring apparatus (16) including a winding drum (22) having a conical outer peripheral surface (27) and a torsional spring (24) for imparting a relatively constant urging force to a cable 23 secured to the door in the direction of the first position.
Abstract:
An automatic sliding door cable mechanism with a take up guide member (46) mounted in a drum (14) for taking up slack of a cable during installation of the cable. A second drum (16) has an elliptical profile drum helix (96) for increasing durability of the operating cable for the automatic door.