Abstract:
A wireless subsea seismic sensor capable of independent location and operation in arrays, and methods of data collection from arrays of such sensors.
Abstract:
A process for vibration analysis, including the steps of: receiving synchronized motion measurements of particle motion in two or three orthogonal dimensions over a selected period of time at a plurality of different measurement locations; and determining one or more strain waveforms in the orthogonal dimensions in regions spanning the plurality of measurement locations using the motion measurements.
Abstract:
A system in accordance with an embodiment of the present disclosure comprises at least two electrodes coupled to an electromagnetically sensitive bio-organism and control logic configured to predict an earthquake based upon signals produced by the electrodes in response to an electromagnetic signal.
Abstract:
An underwater seismic system for reducing noise due to ghost reflections or motion through the water from seismic signals. The system includes two motion sensors. One sensor has a first response and is sensitive to platform-motion-induced noise as well as to acoustic waves. The other sensor has a different construction that isolates it from the acoustic waves so that its response is mainly to motion noise. The outputs of the two sensor responses are combined to remove the effects of motion noise. When further combined with a hydrophone signal, noise due to ghost reflections is reduced.
Abstract:
A marine seismic exploration method and system comprised of continuous recording, self-contained ocean bottom pods characterized by low profile casings. An external bumper is provided to promote ocean bottom coupling and prevent fishing net entrapment. Pods are tethered together with flexible, non-rigid, non-conducting cable used to control pod deployment. Pods are deployed and retrieved from a boat deck configured to have a storage system and a handling system to attach pods to cable on-the-fly. The storage system is a juke box configuration of slots wherein individual pods are randomly stored in the slots to permit data extraction, charging, testing and synchronizing without opening the pods. A pod may include an inertial navigation system to determine ocean floor location and a rubidium clock for timing. The system includes mathematical gimballing. The cable may include shear couplings designed to automatically shear apart if a certain level of cable tension is reached.
Abstract:
A method, system and a marine node for recording seismic waves underwater. The node includes a first module configured to house a seismic sensor; bottom and top plates attached to the first module; a second module removably attached to the first module and configured to slide between the bottom and top plates, the second module including a first battery and a data storage device; and a third module removably attached to the first module and configured to slide between the bottom and top plates, the third module including a second battery.
Abstract:
In one aspect, a seismic data acquisition unit is disclosed including a closed housing containing: a seismic sensor; a processor operatively coupled to the seismic sensor; a memory operatively coupled to the processor to record seismic data from the sensor; and a power source configured to power the sensor, processor and memory. The sensor, processor, memory and power source are configured to be assemble as an operable unit in the absence of the closed housing.
Abstract:
A self-contained, wireless seismic data acquisition unit having a cylindrically shaped case with smooth side walls along the length of the case. A retaining ring around the circumference is used to secure the cylindrical upper portion of the case to the cylindrical lower portion of the case. Interleaved fingers on the upper portion of the case and the lower portion of the case prevent the upper portion and the lower portion from rotating relative to one another. Ruggedized external electrical contacts are physically decoupled from rigid attachment to the internal electrical components of the unit utilizing electrical pins that “float” relative to the external case and the internal circuit board on which the pins are carried. The seismic sensors in the unit, such as geophones, and the antennae for the unit are located along the major axis of the cylindrically shaped case to improve fidelity and timing functions.
Abstract:
A folded pendulum is described. The folded pendulum can be a monolithic pendulum and is positioned in the vertical configuration. The folded pendulum allows for more compact realizations through high decouplings of a vertical degree of freedom from other degrees of freedom as well as optimal mechanical quality factors.
Abstract:
A streamer for seismic prospection comprising directional sensors (20), such as geophones or accelerometers, distributed along the streamer, characterized in that said streamer comprises at least two tilt sensors (30, 40) located in remote positions and in locations distant from the directional sensors (20) and means which determined the effective orientation of each directional sensor (20) by interpolating along the streamer the tilt detected by the two tilt sensors (30, 40).