Abstract:
A system and method for inspecting a vehicle or other object by means of two sources and one or more detectors of penetrating radiation. The sources and detector(s) are carried on a mobile conveyance and deployed at a point of operation. One source irradiates an inspected object from within an enclosure, while a second source swings away from the conveyance on a deployable member, such as a boom, such that the second source can irradiate the vehicle from above. A backscatter image of the inspected object is based at least in part on radiation from the second source scattered by the inspected object.
Abstract:
The present application discloses an X-ray imaging apparatus for determining a surface profile of an object under inspection that is positioned at a distance from the apparatus. The X-ray imaging system has an X-ray source for producing a scanning beam of X-rays directed toward the object, a detector assembly for providing a signal representative of an intensity of X-rays backscattered from the object, and processing circuitry to determine a time difference between when the X-ray source is switched on and when the backscattered X-rays arrive at the detector assembly. The processing circuitry is adapted to output data representative of the surface profile of the object under inspection.
Abstract:
Provided is a security checking system. The security checking system includes an electron beam acceleration unit for accelerating electron beams having at least one energy intensity, an X-ray guide unit converting the electron beams accelerated by the electron beam acceleration unit into X-rays to guide the converted X-rays into an object, a neutron guide unit, and a detection unit detecting the X-rays and neutrons passing through the object. Thus, nuclear materials within the object may be detected, and also, maintenance/repair costs may be inexpensive to improve economic feasibility.
Abstract:
The present invention provides for an improved scanning process with a stationary X-ray source arranged to generate X-rays from a plurality of X-ray source positions around a scanning region, a first set of detectors arranged to detect X-rays transmitted through the scanning region, and at least one processor arranged to process outputs from the first set of detectors to generate tomographic image data. The X-ray screening system is used in combination with other screening technologies, such as NQR-based screening, X-ray diffraction based screening, X-ray back-scatter based screening, or Trace Detection based screening.
Abstract:
The present invention provides for an improved scanning process with a stationary X-ray source arranged to generate X-rays from a plurality of X-ray source positions around a scanning region, a first set of detectors arranged to detect X-rays transmitted through the scanning region, and at least one processor arranged to process outputs from the first set of detectors to generate tomographic image data. The X-ray screening system is used in combination with other screening technologies, such as NQR-based screening, X-ray diffraction based screening, X-ray back-scatter based screening, or Trace Detection based screening.
Abstract:
CT scanning of transportation containers is performed by generating X-rays at various points at the opposite sides of the containers, detecting the X-rays passing through the containers, and analyzing the data received to determine the presence of contraband. The X-rays are generated by modulating a magnetic field through which a high-energy electron beam passes to deflect the beam successively to different targets positioned around the sides of the container, while the electron beam source remains stationary. The X-rays are detected by an array of cells using X-ray responsive storage phosphor material to emit light which is sent to analyzing and comparing equipment. The targets and detectors and the cargo container are moved relative to one another to scan a selected volume of the container.
Abstract:
A system and methods for identifying contents of an enclosure such as an air cargo container. A three-dimensional image indicative of at least one of the CT number and the density of contents of the enclosure is obtained using penetrating radiation such as x-rays. If one or more suspect regions are identified among contents of the enclosure, a collimated neutron beam is activated to traverse each suspect region and fluorescent emission from the suspect region is detected, allowing material within the suspect region to be characterized based at least on the detected fluorescent emission. Additionally, the collimated neutron beam may be employed for neutron imaging of the contents of the enclosure.
Abstract:
CT scanning of transportation containers is performed by generating X-rays at various points at the opposite sides of the containers, detecting the X-rays passing through the containers, and analyzing the data received to determine the presence of contraband. The X-rays are generated by modulating a magnetic field through which a high-energy electron beam passes to deflect the beam successively to different targets positioned around the sides of the container, while the electron beam source remains stationary. The X-rays are detected by an array of cells using X-ray responsive storage phosphor material to emit light which is sent to analyzing and comparing equipment. The targets and detectors and the cargo container are moved relative to one another to scan a selected volume of the container.
Abstract:
A method and apparatus combining Gamma Resonance Absorption, Gamma Resonance Fluorescence, Gamma Induced Photofission, Dual Beam Gamma Energy Absorptiometry modality in a single system for contraband detection/identification. Such contraband detection systems utilize novel proton beam target devices capable of generating single or multiple monoenergetic gamma ray beams used in detection/measurement of contraband, for simultaneous detection of multiple target objects in a single scan.
Abstract:
This invention relates to a combined nuclear quadrupole resonance and X-ray contraband detection system with a metal shield alarm that is activated when the area of the metal in the object being scanned as determined by the resonance frequency shifts of the NQR sensors exceeds the area of the metal in the object being scanned as determined by X-rays by an amount sufficient to shield contraband.