Abstract:
Embodiments are provided for a waveguide polarizer comprising a series of bends. The waveguide polarizer is suitable for used in optical waveguide devices or circuits, where a polarized light is required, such as for single polarization output. The polarizer design is independent of the function of the optical devices. In an embodiment, an optical polarizer comprises an optical waveguide configured to propagate light at a designated polarization mode, and comprising a bend in a same plane of the propagated light. The bend has a geometry configured to contain in the optical waveguide the designated polarization mode of the propagated light and radiate outside the optical waveguide a second polarization mode of the propagated light.
Abstract:
An array reflector comprising a waveguide and a high reflectivity mirror is disclosed. The waveguide has an input end and a reflective end. The high reflectivity mirror is disposed at the reflective end. The array reflector also includes n−1 mirrors arrayed along the length of the waveguide, wherein n is an integer greater than two.
Abstract:
Embodiments of the invention describe photonic integrated circuits (PICs) for accomplishing polarization splitting and rotation. Embodiments of the invention include a first waveguide to receive light comprising orthogonally polarized transverse electric (TE) and transverse magnetic (TM) modes, and a second waveguide disposed below the first waveguide and comprising a reverse taper-shaped side to adiabatically receive one of the polarization modes (e.g., the TE mode) of the received light from the first waveguide. Said horizontal offset between the first and the reverse taper-shaped side of the second waveguide comprises an offset such that, for example, the TM mode of the received light is rotated to a TE mode in the first waveguide. The above described offsets and taper shaped structures may also be used in an optical combiner.
Abstract:
An optical polarization rotator includes first and second optical waveguide ribs located along a planar surface of a substrate. The second optical waveguide rib is located farther from the surface than the first optical waveguide rib. First segments of the optical waveguide ribs form a vertical stack over the substrate, and second segments of the optical waveguide ribs are offset laterally in a direction along the planar surface. The first and second optical waveguide ribs are formed of materials with different bulk refractive indexes.
Abstract:
Methods and systems for grating couplers incorporating perturbed waveguides are disclosed and may include in a semiconductor photonics die, communicating optical signals into and/or out of the die utilizing a grating coupler on the die, where the grating coupler comprises perturbed waveguides. The perturbed waveguides may comprise a variable width along their length. The grating coupler may comprise a single polarization grating coupler comprising perturbed waveguides and a non-perturbed grating. The grating coupler may comprise a polarization splitting grating coupler (PSCC) that includes two sets of perturbed waveguides at a non-zero angle, or a plurality of non-linear rows of discrete shapes. The PSCC may comprise discrete scatterers at an intersection of the sets of perturbed waveguides. The grating couplers may be etched in a silicon layer on the semiconductor photonics die or deposited on the semiconductor photonics die. The grating coupler may comprise individual scatterers between the perturbed waveguides.
Abstract:
An optical polarization converter device includes a first polarization converter section [1100] and a second polarization converter section [1102], which have mirror image cross-sections of each other and which are made of a common material and have orientation (i.e., tilt) errors equal in magnitude and opposite in sign. Preferably, one section has half, the other one and a half times the length of an original (single section, non-tolerant) polarization converter, i.e., the lengths of the two sections have a ratio of 1:3. Other embodiments include length ratios of 3:5 and 5:7. In addition to correcting fabrication errors, the polarization converter also corrects errors due to temperature and wavelength, improving the tolerance with respect to operational conditions.
Abstract:
A polarization rotator comprises a first waveguide configured to be coupled to an input coupler at a first end and a second waveguide, wherein the first waveguide is offset from the second waveguide and a second end of the first waveguide is coupled to a second end of the second waveguide.
Abstract:
An integrated optical circuit includes a substrate having an input face, an output face, a lower face and an upper face, an optical waveguide extending between a first end located on the input face of the substrate and a second waveguide end located on the output face of the substrate. The integrated optical circuit further includes at least one off-center groove, the off-center groove extending from the lower face to the inside of the substrate, the at least one off-center groove being located at a non-zero distance d from the median plane, the off-center groove replacing a central groove and the at least one off-center groove being capable of attenuating the non-guided optical beam transmitted by the substrate between the first end and the second end.
Abstract:
A polarizing splitter includes a base, an asymmetric Y-shaped waveguide, and a pair of strip-shaped electrodes. The Y-shaped waveguide protrudes from the upper surface and includes an input section for the passage of both transverse electric and transverse magnetic waves, a first branch for transmitting the transverse electric wave only, and a second branch for transmitting the transverse magnetic wave only. The first branch and the second branch branch from the input section. The electrodes are positioned on the surface, arranged at opposite sides of the input section, and are substantially parallel with a central axis of the input section.
Abstract:
An optical polarization converter device includes a first polarization converter section [1100] and a second polarization converter section [1102], which have mirror image cross-sections of each other and which are made of a common material and have orientation (i.e., tilt) errors equal in magnitude and opposite in sign. Preferably, one section has half, the other one and a half times the length of an original (single section, non-tolerant) polarization converter, i.e., the lengths of the two sections have a ratio of 1:3. Other embodiments include length ratios of 3:5 and 5:7. In addition to correcting fabrication errors, the polarization converter also corrects errors due to temperature and wavelength, improving the tolerance with respect to operational conditions.