Abstract:
The present disclosure relates generally to data hiding for retail product packaging and other printed objects. One embodiment embeds an information signal in a spot color for product packaging. The spot color is screened, and overprinted with process color tint. The tint is modulated prior to overprinting with optimized signal tweaks. The optimization can include consideration of a detector spectral dependency (e.g., red and/or green illumination). Many other embodiments and combinations are described in the subject patent document.
Abstract:
Sparse signal modulation schemes encode a data channel on a host image in a manner that is robust, flexible to achieve perceptual quality constraints, and provides improved data capacity. The host image is printed by any of a variety of means to apply the image, with sparse signal, to an object. After image capture of the object, a decoder processes the captured image to detect and extract data modulated into the sparse signal. The sparse signal may incorporate implicit or explicit synchronization components, which are either formed from the data signal or are complementary to it.
Abstract:
The present disclosure relate generally to color science and digital watermarking. A full color visibility model has been developed which has good correlation to subjective visibility tests for color patches degraded with a watermark. A relatively better correlation can be achieved with a model that applies a luminance correction to the contrast sensitivity functions (CSF). The model can be applied during the watermark embed process, using a pyramid based method, to obtain equal visibility. Better robustness and visibility can be obtained with equal visibility embed than uniform strength embed. Of course, other features, combinations and claims are disclosed as well.
Abstract:
Methods, devices, systems and computer program products facilitate embedding and extraction of transactional watermarks into and from a video content. One such method includes selecting a first number of frames from a video content and performing temporal and a spatial psychovisual analysis on the selected frames. For each selected frame, at least one area for insertion of watermarks is identified. A first and a second watermark symbol is embedded separately in the identified area(s), and the embedded frames are re-encoded to obtain a first and a second alternative data. An inserter manifest is formed that includes the first and the second alternative data to enable insertion of a watermark into the video content by selecting one or the other of the first and second alternative data for insertion into the video content.
Abstract:
Methods and devices are provided to thwart analysis of a watermarking system by preventing analysis of watermarks in a host content. Upon receiving a content at a watermark embedding device, the content is analyzed to ascertain whether one or more test features are present in at least a first portion of the received content. When the analysis reveals that one or more test features are present, embedding of watermarks in at least the first portion of the received content is disabled. The test features of interest include a temporal, a spatial and/or a frequency characteristic such that, if a region of the content that includes test feature is embedded with a watermark, at least one characteristic of the embedded watermark is detectable upon analysis of that region. The test feature can, for example, approximate an impulse signal, a step function signal or a pure sinusoidal signal.
Abstract:
The present disclosure relates generally to cell phones and cameras, and to digital watermarking involving such cell phones and cameras. One claim recites a method comprising: measuring distortion introduced by a cell phone camera; using a programmed electronic processor, quantifying the distortion; and providing quantified distortion as feedback to adjust a digital watermark embedding process in view of the distortion introduced by the cell phone camera. The act of quantifying distortion may include, e.g., quantifying a spatial frequency response (SFR) of the cell phone camera. Of course, other claims and combinations are provided too.
Abstract:
A method comprises providing a change to apply to video; dividing video into blocks; creating propagation map which captures only specific changes to blocks that would be changed by the application of the change; evaluating the change based on a luminance criterion as being a perceptible change or an imperceptible change; for propagation maps of an imperceptible change, storing the propagation map to a list, wherein the propagation map is the principle data structure to be applied to the video. The propagation map can be created by using motion vector changes associated with the change.
Abstract:
Methods, devices, systems and computer program products improve the detection of watermarks that are embedded in a host content by providing information indicative of a ranking of watermark payloads to watermark extractors. A watermark extractor device obtains information indicative of a ranking of a plurality of watermark payload values, where such information designates each watermark payload value within a first subset of the plurality of watermark payload values as having an associated rank value. Based at least in-part on the information indicative of the ranking, the watermark extractor device is configured to prioritize resource allocation for extraction of payload values that are designated as belonging to the first subset over payload values that are not designated as belonging to the first subset. The watermark extractor then extracts a payload value, designated as belonging to the first subset, from one or more watermarks embedded in the host content.
Abstract:
A digital image processing system takes color plus Z channel data as input, preprocesses, decimates, and codes the Z channel in-band as digital watermark data embedded within the color data prior to encoding and transmission. A second digital image processing system receives, decodes, and extracts the decimated Z channel data before applying statistical regularization to restore a full-resolution Z channel prior to depth-image-based rendering.
Abstract:
The invention relates to a method of watermarking a data set comprising the steps of: selecting, in the data set, at least one group of two data; and modifying at least one data of the group. The data is modified such that the difference between the modified data and the other data of the group possibly modified equals a predefined watermarking parameter multiplied by an integer number, called rejection class, associated with the group and equal to the integer nearest to the ratio between the difference between the at least one data and the other data of the group before the modification divided by the watermarking parameter.