Abstract:
A configurable multimode despreader for spread spectrum applications is disclosed herein. The despreader includes a plurality of data lines, at least one selective coupler coupled to the plurality of data lines, at least one multiplier coupled to the selective coupler, and a code input line coupled to the multiplier. The selective coupler selectively couples one of the plurality of data lines with the multiplier per any one of a plurality of despreading protocols. The multiplier then multiplies a desired input data type received from the selective coupler with a despreading code chip received from the code input line to produce an observation. The programmable multimode despreader supports variable code and data modulation schemes and variable spreading factors.
Abstract:
A wireless spread spectrum communication platform for processing a communication signal is disclosed herein. The wireless communication platform includes a first computing element, a second computing element, and a reconfigurable interconnect. The first computing element is coupled to the second computing element via the reconfigurable interconnect. A design configuration of the first computing element is heterogeneous with respect to a design configuration of the second computing element. The reconfigurable interconnect has an uncommitted architecture, thereby allowing it to be configured by an outside source to couple portions of the first reconfigurable interconnect with portions of the second reconfigurable interconnect in a variety of combinations. The first computing element, the second computing element, and the reconfigurable interconnect operable to perform discrete functions suitable for processing of the communication signal.
Abstract:
A configurable multimode despreader for spread spectrum applications is disclosed herein. The despreader includes a plurality of data lines, at least one selective coupler coupled to the plurality of data lines, at least one multiplier coupled to the selective coupler, and a code input line coupled to the multiplier. The selective coupler selectively couples one of the plurality of data lines with the multiplier per any one of a plurality of despreading protocols. The multiplier then multiplies a desired input data type received from the selective coupler with a despreading code chip received from the code input line to produce an observation. The programmable multimode despreader supports variable code and data modulation schemes and variable spreading factors.
Abstract:
A data transceiver module for digital data communications in a portable hand-held data terminal has multiple data spread spectrum modes which include direct sequence and frequency function modulation algorithms. The transceiver module has multiple user or program configurable data rates, modulation, channelization and process gain in order to maximize the performance of radio data transmissions and to maximize interference immunity. Various module housings, which may be PCMCIA type, are able to be mated with a suitably designed data terminal. Media access control protocols and interfaces of multiple nominal operational frequencies are utilized. Wireless access devices in a cell based network each consider a variety of factors when choosing one of a plurality of modes of wireless operation and associated operating parameters. Such selection defines a communication channel to support wireless data, message and communication exchanges. In further embodiments, the wireless access devices also support a second channel, a busy/control channel, for managing communication on the main communication channel and to overcome roaming and hidden terminal problems. Roaming terminal devices are also configured to support the dual channel design. Such configuration in both circumstances may involve the use of a multimode radio that is timeshared between the two channels or two radios, one dedicated to each channel.
Abstract:
A system for implementing a searcher for use with a communication device is provided. According to one aspect of the system, the searcher includes one or more computational units which are used to perform a PN sequence generation function to generate a sequence of PN codes. The searcher further includes a number of computational units which are used to correlate received signal samples with the PN codes. As each signal sample is received by the communication device, the received signal sample is correlated with a first PN sequence in a parallel manner using the computational units. The correlation results are then accumulated. As the next signal sample is received, this newly received signal sample is similarly correlated with the next PN sequence in a parallel manner. Likewise, the correlation results are accumulated with the previous correlation results. The foregoing process is repeated until all the signal samples needed for correlation are received and correlated with sequences of PN codes. According to another aspect of the system, the a computational units are implemented using adaptive hardware resources. The number of computational units which are used to implement the correlation function is adjustable depending on, for example, the amount of available adaptive hardware resources.
Abstract:
An apparatus and method of a shared correlator system for a code division, multiple access (CDMA) receiver employs scheduling of correlation operations with identification tags (ID-tags). The scheduling allows for shared vector generation and correlation operations between processing units by pipeline processing. The shared correlator schedules correlation operations requested by processing units, generates matched-filter PN vectors associated with the identification tags for the correlation operations, and provides correlation results for the correlation operations. Scheduling may be implemented with a control processor, scheduler and memory. The control processor determines the matched-filter PN vector information for a requested operation using the current state of a reference PN code sequence, and this information is stored as the ID-tag. The control processor stores the ID-tag at an address in memory associated with a slot of a periodic symbol schedule. A counter of the scheduler steps through each memory address to provide an ID-tag for each slot. The ID-tag allows the matched-filter PN vector information for a requested correlation operation to be provided to the vector generator and vector correlator to generate the matched-filter PN vector for the slot.
Abstract:
The memory circuit of the present invention temporarily stores information symbols included in a reception signal according to a CDMA system which allows multi-code communication to carry out coherent detection using a pilot symbol. The memory circuit of the present invention is constructed of a plurality of electrically independent memory blocks. Each memory block corresponds to one code and one slot of an information symbol. Write access and read access to memory blocks are generated periodically on condition that write access and read access to one memory block do not occur simultaneously. Blocks to which no access is generated are forcibly set to a low power consumption mode to reduce power consumption caused by accesses.
Abstract:
In a method of interference mitigation in a multi user detection capable radio base station in a communication system, which radio base station comprises a set of confined detection modules, at least one of which is capable of handling multiple user connections, first and at least a second subset of detection modules are formed from said set, wherein the second set comprises at least one interference mitigation capable detection module. Interference information from the first subset is communicated to the second subset, interference originating in user connections of the first subset are then mitigated from the user connections of the second subset. Subsequently, interference is mutually mitigated between the connections within the interference mitigation capable detection module.
Abstract:
In a synchronization processing circuit in a wireless communication system, a correlation operation unit is designed to have a parallel structure which can be restructured to improve flexibility in order to cope with various synchronization processings in a plurality of radio systems.The synchronization processing circuit in the wireless communication system comprises a plurality of correlation operation modules 31 through 3N that execute correlation operation, each of which correlation operation modules includes a plurality of correlators 60, a plurality of shift registers 50 for shifting a correlation code, an interface which transfers a shifted correlation code to an adjacent correlation operation unit for timing correlation processing, and a correlation code selection unit 40 which selects an externally and individually applied correlation code for code correlation processing and a correlation code transferred from an adjacent correlation operation unit as the correlation code.
Abstract:
A configurable all-digital coherent demodulator system for spread spectrum digital communications is disclosed herein. The demodulator system includes an extended and long code demodulator (ELCD) coupled to a traffic channel demodulator (TCD) and a parameter estimator (PE). The demodulator also includes a pilot assisted correction device (PACD) that is coupled to the PE and the TCD. The ELCD provides a code-demodulated signal to the TCD and the PE. In turn, the TCD provides a demodulated output data signal to the PE. The PACD corrects the phase error of the demodulated output data based on an error estimate that is fed forward from the PE. Accumulation operations in the ELCD, TCD, and PE are all programmable. Similarly, a phase delay in the PACD is also programmable to provide synchronization with the error estimate from the PE.