Abstract:
Methods, a wireless device (110) and a radio network node (120) for managing a control block are disclosed. An extended Temporary Flow Identifier, eTFI, is assigned to the wireless device (110) by the radio network node (120). The radio network node (120) constructs the control information. The radio network node (120) performs a bit-wise modulo two addition with a control block and a combination of the eTFI and a pre-determined bit pattern to obtain a modified control block. The radio network node (120) adds channel coding redundancy. The radio network node (120) maps the modified control block onto physical resources. The radio network node (120) sends the modified control block to the wireless device (110). The wireless device (110) decodes the received modified control block removing the channel coding redundancy, performs a bit-wise modulo two addition between the modified control block and a combination of the eTFI and a pre-determined bit pattern to obtain a control block. The wireless device (110) decodes the control block using FIRE-decoding to obtain the control information. The wireless device (110) determines it is the intended recipient of the control information if the TFI information therein matches its assigned TFI. Corresponding computer programs and carriers therefor are also disclosed.
Abstract:
A system for transferring data includes an interface configured to receive data that is sent via a first link, and a processor coupled to the interface. The processor is configured to: receive data that is sent via a first link; determine whether there is discontinuity in the received data, the determination being based at least in part on information included in the received data; in the event that the received data includes a discontinuity, generate replacement data that repairs the discontinuity; and transmit at least a portion of replacement data to a second link such that a synchronization requirement associated with the second link is fulfilled.
Abstract:
A method and apparatus for handling data error in a data transmission system including a relay station which receives a data from a transmission apparatus and transmits the data to a receiving apparatus is provided. A relay station which transmits, to a receiving apparatus, a data received from a transmission apparatus, the relay station including: a data receiver to receive the data from the transmission apparatus; an error detector to detect whether an error of the received data is generated; and a data transmitter to transmit the received data and an error generation indicator for the received data to the receiving apparatus when the error is generated. According to the present invention, it is possible to combine transmitted data with retransmitted data and decode error-free data by transmitting data including a generated error to a receiving apparatus when error is again generated in the retransmitted data.
Abstract:
A transmitting/receiving system and a data processing method of the same are disclosed herein. The receiving system may include a receiving unit, a signaling decoder, and an FIC handler. The receiving unit receives a broadcast signal including mobile service data configuring a data group. Herein, a transmission frame consists of multiple sub-frame, a sub-frame consists of multiple slots, and the data group is allocated to at least one slot. The signaling decoder acquires an FIC segment from the broadcast signal. Herein the FIC segment consists of an 35-byte FIC segment payload including a portion of a signaling information between at least one ensemble and at least one mobile service, and an 2-byte FIC segment header including current/next (C/N) indication information indicating whether data of the FIC segment payload corresponds to information of a current transmission frame or to information of a next transmission frame. The FIC handler recovers at least one of an FIC chunk including signaling information between at least one ensemble and at least one mobile service of the current transmission frame and an FIC chunk including signaling information between at least one ensemble and at least one mobile service of the next transmission frame, from the payload of each FIC segment by using the C/N indication information.
Abstract:
A destination node in a data network for transmission of real-time data by a data telegram, the data telegram including an identification, data and a transfer status, is provided. The destination node includes a device for receiving a first data telegram, a device for storing the data of the first data telegram and an assigned timer value, a device for receiving a second data telegram and a device for replacing the stored data of the first data telegram, wherein the stored data of the first data telegram is replaced with data of the second data telegram. Further, a method and a non-transitory storage medium are provided.
Abstract:
Decoding logic is arranged to receive an encoded data signal. The decoding logic comprises a convolutional decoder arranged to perform convolutional decoding on the encoded data signal, to produce a decoded data signal. The decoding logic comprises header bit prediction logic arranged to predict a value for at least one header bit within the decoded data signal, and to provide the predicted value for the at least one header bit to the convolutional decoder to be applied during convolutional decoding.
Abstract:
A method for transmitting a data transfer block, the data transfer block comprising at least one data segment having a predetermined number of one or more data units, to be identified using validity information, and a header segment, the method including the following steps: a) writing a data unit into a first area of an output register predetermined for the data segment, from which the buffered data transfer block is transmitted via a bus system at a predetermined transmission instant with the aid of a time multiplexing method; b) writing a validity datum, implemented as a toggle bit or as an N-bit counter, into a second area of the output register predetermined for the header segment, the particular validity datum specifying the validity of the corresponding written data unit; c) enabling the data transfer block buffered in the output register for transmission, after the particular data unit and the corresponding validity datum are written into the output register; d) repeating steps (a) through (c) until the predetermined number of the data units and the corresponding validity data are written or the predetermined transmission instant is reached; and e) transmitting the enabled data transfer block buffered in the output register at the transmission instant.
Abstract:
A wireless network system and corresponding methodologiesthat operates in a user cooperative communication system is provided. In operation, the system either combines packets transmitted from a direct channel with packets transmitted from and a relay channel, or uses erroneously relayed packets to assist decoding a direct packet.
Abstract:
A destination node in a data network for transmission of real-time data by a data telegram, the data telegram including an identification, data and a transfer status, is provided. The destination node includes a device for receiving a first data telegram, a device for storing the data of the first data telegram and an assigned timer value, a device for receiving a second data telegram and a device for replacing the stored data of the first data telegram, wherein the stored data of the first data telegram is replaced with data of the second data telegram. Further, a method and a non-transitory storage medium are provided.
Abstract:
A concept is disclosed for outputting a file having a media data container and a metadata container, the concept including providing an error information related to a data sample and storing the error information together with a sample number related to the data sample in the metadata container.