Abstract:
A method of augmenting reality of an image, comprising providing a lenticular lens for viewing an image, wherein the image is a lenticular image comprising at least two interlaced images. At least two fiducial markers are provided in the image. A first sensor located at a first distance from the image detects a first fiducial marker, and a second sensor located at a second distance from the image detects a second fiducial marker, wherein the detection of the each of the first and the second fiducial markers triggers a computing process delivering augmented reality to a user via a screen. The second distance is closer to the image than the first distance, and the second fiducial marker is capable of being detected by the second sensor from the second distance, but not from the first distance.
Abstract:
A method of setting a plurality of depth values of a plurality of objects in a scene. The method comprises providing an image dataset depicting a scene comprising a plurality of objects having a plurality of depth values with a plurality of depth differences thereamong, selecting a depth range, simultaneously adjusting the plurality of depth values while maintaining the plurality of depth differences, the adjusting being limited by the depth range, and instructing the generation of an output image depicting the scene so that the plurality of objects having the plurality of adjusted depth values.
Abstract:
A method for a production of a lenticular image. The method comprises feeding a lenticular printing substrate having a corrugated side and a printing side into a digital printing press, feeding at least one nontransparent ink to set a substantially nontransparent layer on a printing blanket of the printing press, feeding a plurality of colored inks to set an interlaced color image layer on top of the substantially nontransparent layer on the printing blanket, and printing with the printing blanket onto the printing side.
Abstract:
The invention provides a lenticular lens type three-dimensional image display device and a method of fabricating the device without a need for a clear plastic substrate transposed between the image and lenticular lenses. The device can be obtained by directly printing curable coatings onto the image, making them particularly well suited for volume production. The combination the image printing and application of curable coatings process can be joined together to conduct the single pass-process. The single pass-process allows for flexibility of the printing only selective areas of the substrate. Moreover, this process allows the device to be recyclable.
Abstract:
A method of creating a lenticular imaging article. The method comprises printing an interlaced composite image according to a reference grid of a printer, providing a lenticular lens sheet having a plurality of parallel lenticular lines between a plurality of lenslets, selecting an acute angle for an intersection between the first and second axes according to a function of a resolution of the interlaced composite image and a pitch of the lenticular lens sheet, and positioning the lenticular lens sheet so that the intersection forms the acute angle.
Abstract:
An image recombination structure is disclosed. The structure includes a plurality of image information layers and an optical element layer. The image information layers are laminated or overlapped to each other in a projecting direction of a light and are combined into an image. At least two image information of the image are formed on the image information layers respectively according to a color information and a lightness information of the image or according to a color model of the image to display the image by means of superposition. The optical element layer and the image information layers are overlapped in the projecting direction of the light.
Abstract:
A method of creating a lenticular imaging article. The method comprises printing an interlaced composite image according to a reference grid of a printer, providing a lenticular lens sheet having a plurality of parallel lenticular lines between a plurality of lenslets, selecting an acute angle for an intersection between the first and second axes according to a function of a resolution of the interlaced composite image and a pitch of the lenticular lens sheet, and positioning the lenticular lens sheet so that the intersection forms the acute angle.
Abstract:
An image processing apparatus for generating image data for displaying a stereoscopic image on the basis of an image for a left eye and an image for a right eye, the image processing apparatus includes first detecting means for detecting image pairs each taken in a continuous shooting mode among a plurality of images, second detecting means for detecting image pairs each taken consecutively within a predetermined time among the plurality of images, presenting means for presenting the image pairs detected by the first detecting means or the second detecting means to a user, and generating means for setting one of two images comprising a the image pair selected by the user among the image pairs presented by the presenting means as the image for the left eye and the other as the image for the right eye, and generating the image data for displaying the stereoscopic image.
Abstract:
Disclosed herein is a method of making a corresponding lenticular image comprising: providing an output device in communication with a computer having a memory; receiving into the computer memory an interlaced image file; converting the interlaced image file into an output having an output resolution; varying the resolution of the output to define a varied output resolution; and creating a corresponding lenticular image using the output at the varied output resolution. In a preferred embodiment, the output device is a plate setter and the output is a plate. As such, in at least one embodiment, the method is suitable for use with a Computer-to-Plate (“CTP”) system.
Abstract:
Disclosed herein is a method of making a corresponding lenticular image comprising: providing an output device in communication with a computer having a memory; receiving into the computer memory an interlaced image file; converting the interlaced image file into an output having an output resolution; varying the resolution of the output to define a varied output resolution; and creating a corresponding lenticular image using the output at the varied output resolution. In a preferred embodiment, the output device is a plate setter and the output is a plate. As such, in at least one embodiment, the method is suitable for use with a Computer-to-Plate (“CTP”) system.