Abstract:
A tire of which tread rubber comprises a conducive rubber at least partially, the conducive rubber extending from the radially inner surface of the tread rubber to the ground contacting face, and the conducive rubber compounded from 100 parts by weight of diene rubber and 2 to 30 parts by weight of conductive short fibers, the conductive short fibers formed by coating reinforcing short fibers with a conductive substance, and the conductive rubber has a volume resistance of less than 1×108 ohm cm.
Abstract:
A pneumatic tire includes a low conductive rubber portion forming at least a cap rubber portion of the tread rubber which provides a tread surface of the tire. A narrow high conductive rubber strip extends in a radial direction of the tire at a widthwise center region of the cap rubber portion, and is exposed to the tread surface to form a discharge path for allowing electrostatic charges of a vehicle body to be discharged to a road surface. An unvulcanized tread rubber for the tire is obtained by passing a high conductive unvulcanized rubber through a passage extending from an extruder unit to the back side of an extrusion orifice, to form at least part of the remaining potion of the tread rubber. The high conductive unvulcanized rubber while passing through the passage is partly introduced into a narrow branch passage and passed through a slit-like opening having a cross-sectional shape which is substantially straight in a height direction of the extrusion head and situated in the vicinity of the back side of the extrusion orifice, to form the narrow strip of the high conductive rubber in a composite body of different kinds of unvulcanized rubbers.
Abstract:
The invention relates to a rubber tire composed of carbon black reinforced rubber carcass and having a rubber tread which is composed of a unitary, co-extrusion of tread cap, base and miniwings and, wherein a portion of the miniwings extend as a thin layer over a portion of the tread cap's outer surface to create a path of reduced electrical resistivity.
Abstract:
A pneumatic vehicle tire comprising a tread strip which forms the tire tread and is made from an electrically insulating or poorly conducting material and comprising, beneath the tread strip, a layer which is a good electrical conductor wherein, in order to bring about an adequate dissipation of electrical charge from the vehicle bodywork, the layer which is of good electrical conductivity extends at least regionally up to and into the tire running surface when considered over the circumference of the tire.
Abstract:
The invention relates to a rubber tire composed of carbon black reinforced rubber carcass and having a rubber tread which is quantitatively reinforced with silica and contains a minor amount of carbon black reinforcement and/or carbon fibers. When said tread contains silica and carbon black reinforcement exclusive of carbon fibers, the said tread has a thin rubber layer over at least a portion of the outer surface tread intended to be ground-contacting wherein said rubber layer contains a combination of silica and/or carbon black reinforcement and carbon fibers. In one aspect, such alternative outer rubber layer (a) extends across at least a portion of the outer surface of the tread intended to be ground contacting and (b) contacts at least one other carbon black reinforced rubber component of the tire to provide a path of relatively low electrical resistance from said quantitatively silica reinforced tread to the bead portion of the tire carcass.
Abstract:
The tire of this invention has a silica-rich tread compound for excellent rolling resistance and tread wear properties. The tire is made to be conductive such that electrostatic charges on the vehicle can be quickly dissipated when the vehicle stops. An electrostatic discharge ring is located on at least one shoulder portion of the tire and has a relatively low volume resistivity, on the order of 100 megohm centimeter. The discharge ring is positioned to make contact with a conductive sidewall portion of the tire. The overall resistivity of the tire from the rim to the ground surface is made to be less than about 100 megohms.