Abstract:
A stream of products is packaged and biologically treated by the system. The system has an index conveyor with a filling station and a packaging station. Discrete packages are filled with the stream of products, sealed and moved on an index conveyor. The system moves the discrete packages an irradiation chamber at a steady rate on a continuous speed conveyor. A controller matches the cyclical rate of the index conveyor with the steady rate of the continuous speed conveyor and uses a buffer to transition from the cyclical rate to the steady rate.
Abstract:
A device for treating containers such as bottles, preferably PET containers, such as PET bottles, with a plasma, whereby the device is designed for sterilizing and/or coating the containers. In addition, the device also relates to a method for treating containers, preferably PET containers such as PET bottles, with a plasma, whereby the treatment comprises sterilization and/or the coating of the containers. Also provided is an airlock for containers such as bottles, in particular PET containers such as PET bottles, having cells to receive the containers, at least one cell being designed to receive at least two containers.
Abstract:
A method for sterilizing at least partly formed packages with electron beam irradiation in a packaging machine involves sterilizing each of at least two at least partially separate areas of the package by way of a respective electron beam sterilizing device, with each of the sterilizing devices being adapted to characteristics of each respective one of the two areas, and also performing a respective relative movement between the package and each of the electron beam sterilizing devices, which movements are adapted for the sterilization of each respective one of the two areas with the sterilizing devices.
Abstract:
The disclosure relates to a system for monitoring and control in the sterilization of an object (1) which, for the purpose of sterilization, is electron irradiated from an electron radiation source (2) past which the object is led or conveyed. The system includes a detector (11), a converter (13), a generator (18), a process control unit (19), as well as an ejector mechanism (26) which is disposed to be activated for ejecting the sterilized object (1) on receipt of a negative comparison signal from the process control unit (19).
Abstract:
A method of covering an opening in a laboratory container with aluminum foil to provide a heat-resistant and solvent-resistant closure. The method includes the steps of: providing a preformed aluminum foil cup of sufficient size to cover the container's opening, in which the foil is less than 2.5 mils thick and is free of any substance that could contaminate the laboratory container, in which the cup includes a bottom wall and a raised perimeter sidewall continuous with, and surrounding the bottom wall; inverting and placing the cup over the opening; optionally adjusting the shape and diameter of the cup so as to fit over the opening, and compressing the sidewall of the cup to a friction fit around the opening.
Abstract:
A method includes providing an article including an oxygen scavenger; forming the article into a container; placing an oxygen sensitive product into the container; and exposing the container to actinic radiation at a dosage effective to sterilize the container, and trigger the oxygen scavenger in the article. Alternative methods are also disclosed. A package includes a container, the container including an activated oxygen scavenger; wherein the container is sterilized; and wherein an oxygen sensitive product is disposed in the container.
Abstract:
A method for sterilizing the inside of a container which is ready to be filled, or a package material for a container in the form of a sheet or web wherein such sterilization is effected by way of radiation with an electron beam in combination with a gas stream contacting the beam, while the electron gun and container or package material are in relative motion towards each other.
Abstract:
Wear resistance and oxidation resistance of bioimplantable polymeric parts is improved by packaging the parts within flexible, gas impermeable containers while subjecting the containers and the parts to a relatively high vacuum force. The containers are heat sealed while subjected to the vacuum force such that, upon sealing, hydrostatic pressure is exerted on the part. Following sealing of the packages, the packages and their contents are irradiated to an extent sufficient to sterilize the parts and to promote crosslinking within the part. Alternatively, the same property enhancements can be imparted to polymeric parts by packaging the part within rigid or flexible containers, minimizing the oxygen content within the containers, pressurizing the containers with an inert gas, or with a mixture of hydrogen and an inert gas, to greater than 1.5 atmospheres, and irradiating the part and the container.
Abstract:
An ultraviolet (I/V) sterilization system for food cartons is disclosed. An elongated UV lamp is mounted in a housing. A parabolic cylinder reflector is mounted in the housing with the focus of the reflector coinciding with the axis of the arc in the UV lamp. The shape of the parabolic reflector directs radiation from the lamp into cartons positioned on a conveyor below the lamp. The axis of the arc is parallel to the direction of movement of the cartons on the conveyor. The front surface of the reflector also absorbs heat from the lamp and heat is removed from the reflector by circulating air over the back surface of the reflector.
Abstract:
An ultraviolet (UV) sterilization system for food cartons is disclosed. An elongated UV lamp is mounted in a housing. A parabolic cylinder reflector is mounted in the housing with the focus of the reflector coinciding with the axis of the arc in the UV lamp. The shape of the parabolic reflector directs radiation from the lamp into cartons positioned on a conveyor below the lamp. The axis of the arc is parallel to the direction of movement of the cartons on the conveyor. The front surface of the reflector also absorbs heat from the lamp and heat is removed from the reflector by circulating air over the back surface of the reflector.