Abstract:
Device, system, and method of multi-user multi-input-multi-output (MIMO) wireless communication. In some embodiments, a wireless communication device (102) may be capable of receiving a plurality of channel feedback transmissions from a plurality of user devices (104, 106, 108) respectively, wherein a channel feedback transmission from a user device of the user devices includes partial information relating to a MIMO channel matrix between the wireless communication unit and the user device; and transmitting a multi -user MIMO transmission to the plurality of user devices according to a MIMO beamforming scheme, wherein the MIMO beamforming scheme is based on the plurality of channel feedback transmissions.
Abstract:
A method and apparatus for determining a channel quality indicator (CQI) to be used in link adaptation for Orthogonal Frequency Division Multiplexing (OFDM) communications. In one embodiment of the invention, the CQI is based on a set of capacity values for subcarrier components in a received OFDM signal. In another embodiment, a minimum value from a running average of the set of capacity values is used to determine the CQI.
Abstract:
Communication signals using a first and a second frequency band in a wireless network is described herein. The first frequency band may be associated with a first beamwidth while the second frequency band may be associated with a second beamwidth. An apparatus may include receiver circuitry arranged to receive first signals in a first frequency band associated with a first beamwidth and second signals in a second frequency band associated with a second beamwidth, the first signals comprising a frame synchronization parameter and the second signals comprising frame alignment signals. The apparatus may further include processor circuitry coupled to the receiver circuitry, the processor circuitry arranged to activate or deactivate the receiver circuitry to receive the frame alignment signals based on the frame synchronization parameter. Other embodiments may be described and/or claimed.
Abstract:
An apparatus, system, and method to perform QR decomposition of an input complex matrix are described. The apparatus may include a triangular systolic array to load the input complex matrix and an identity matrix, to perform a unitary complex matrix transformation requiring three rotation angles, and to produce a complex unitary matrix and an upper triangular matrix. The upper triangular matrix may include real diagonal elements. Other embodiments are described and claimed.
Abstract:
An embodiment of the present invention provides a method for communicating in a wireless personal area network, comprising using adaptive beamforming configured for a low-rate mode for reliable low-rate communications and a high-rate mode for high-rate communications and using a fast algorithm to perform antenna beamforming for the high rate mode, wherein the fast algorithm includes training performed on a block-by-block basis with decision feedback from a receiver (RX) to a transmitter (TX) about the usefulness of further training stages.
Abstract:
A method and apparatus for identifying the preamble for an unknown signal received in Orthogonal Frequency Division Multiplexing (OFDM) communications. In one embodiment, the preamble is identified from a set of known preambles using a detection statistic based on a generalized likelihood ratio (GLR) method. In another embodiment, the GLR detection statistic relies on a priori assumptions about a transfer function represented by the received signal.
Abstract:
An apparatus, system, and method to perform QR decomposition of an input complex matrix are described. The apparatus may include a triangular systolic array to load the input complex matrix and an identity matrix, to perform a unitary complex matrix transformation requiring three rotation angles, and to produce a complex unitary matrix and an upper triangular matrix. The upper triangular matrix may include real diagonal elements. Other embodiments are described and claimed.
Abstract:
A multi-antenna transmitter includes an adaptive bit interleaver for orthogonal frequency division multiplexed (OFDM) communications. The adaptive bit interleaver permutes a variable number of coded bits per OFDM symbol (Ncbps). The variable number of coded bits is calculated based on individual subcarrier modulation assignments for orthogonal subcarriers. The interleaver matrix size may be based on the variable number of coded bits per OFDM symbol and the number of subchannels. The interleaver may add padding bits to the interleaver matrix to fill any remaining positions, and after performing an interleaving operation, the interleaver may prune the padding bits to provide a sequence of interleaved bits for subsequent modulation on the orthogonal subcarriers and transmission by more than one antenna. The transmitter may transmit the OFDM symbol in accordance with an IEEE 802.16 standard.
Abstract:
Systems that communicate in a wireless network using a first and a second frequency band are described herein. The systems may use the first frequency band to transmit or receive a control signal, enabling subsequent communication using the second frequency band.
Abstract:
Briefly, a wireless communication system that may transmit and/or receive a data packet that may be generated by at least one of the wireless communication devices operated within the wireless communication system. The data packet may include at least one of a compatibility preamble field, a prefix training field, a physical layer convergence protocol header, a data field, a bit power load field and a postfix training field. At least some of the data packet fields may be encoded with a predetermined code and may be modulated by a predetermined modulation scheme.