Abstract:
Techniques for efficiently sending reports in a wireless communication system are described. Reports may be sent repetitively in accordance with a reporting format. A terminal receives an assignment of a control channel used to send reports and determines a reporting format to use based on the assignment. The reporting format indicates a specific sequence of reports sent in specific locations of a control channel frame. The terminal generates a set of reports for each reporting interval and arranges the set of reports in accordance with the reporting format. The terminal repetitively sends a plurality of sets of reports in a plurality of reporting intervals. Reports may also be sent adaptively based on operating conditions. An appropriate reporting format may be selected based on the operating conditions of the terminal, which may be characterized by environment (e.g., mobility), capabilities, QoS, and/or other factors.
Abstract:
A method for scheduling transmissions to a plurality of users in a communication network determines a satisfaction metric and a dissatisfaction metric for each user in a given timeslot that is to be used for a next scheduled transmission to one of the users. Each user is assigned a weight based on a value of at least one of the user's satisfaction metric, the user's dissatisfaction metric and a rate requested by the user. The use having the highest weight is selected to be served the next scheduled transmission in the given timeslot.
Abstract:
Systems and methodologies are described that facilitate scheduling best effort flows in broadband or wideband wireless communication networks. The systems can include devices and/or component that effectuate associating utility functions to multiple disparate flows based on traffic conditions extant in the wireless system, ascertaining the average rate at which the flow has been serviced in the past, and utilizing the utility function associated with the flow or the average rate that the flow has been serviced in the past to optimally schedule the flow.
Abstract:
Systems and methodologies are described that facilitate and effectuate power allocation schemes that reuse power allocation patterns amongst different carriers for sectors in the same cell and uses different power allocation patterns between cells. The frequency reuse scheme generates power allocation patterns, selects one of the generated power allocation patterns for use among at least two carriers of at least two sectors in a cell, and employs a second disparate power allocation pattern for use between at two cells.
Abstract:
The performance of closed loop transmit diversity (CLTD) systems may be improved, in accordance with aspects of the present invention, by encoding antenna control information fed back from a mobile station to a base station. As compared to prior art CLTD systems that send antenna control bits in unencoded feedback messages, encoding the antenna control information may result in reduced feedback delays and reduced transmission power. Further, in accordance with some aspects of the present invention, the antenna control bits may be fed back to the base station on a common feedback channel also used to feed back channel quality indication, thus reducing processing overhead.
Abstract:
A method of controlling link transmission parameters of a communication flow in a network caches one or more network parameters at the end of a first communication flow for an elapsed time, and adjusts the network parameters for controlling link quality and transmit power of a next communication flow based on an uncertainty that is caused by caching for the elapsed time. The state of a communication channel during a previous communication flow (connection) is used to determine network parameters to use at a future communication flow. When a connection begins, and the network does not know the ideal settings to use, the network defines a specified, elapsed time duration over which the state of a previous connection no longer can be trusted, i.e., an uncertainty period. Network parameters are adjusted to account for uncertainty caused by the elapsed time.
Abstract:
Methods for signaling information to a group of users in a communication network supporting a broadcast-multicast service are described, in which one or more indicator bits of a sequence may be assigned to indicate transmission of signaling information that is related to the group. The sequence may be transmitted to the group on a first channel, with the signaling information related to the group being transmitted on a second channel.
Abstract:
Systems and methodologies are described that facilitate utilizing power-based rate signaling for uplink scheduling in a wireless communications system. A maximum nominal power (e.g., relative maximum transmit power that may be employed on an uplink) may be known to both a base station and a mobile device. For example, the base station and the mobile device may agree upon a maximum nominal power. According to another example, signaling related to a maximum nominal power for utilization on the uplink may be provided over a downlink. Further, selection of a code rate, modulation scheme, and the like for the uplink may be effectuated by a mobile device as a function of the maximum nominal power. Moreover, such selection may be based at least in part upon an interference cost, which may be evaluated by the mobile device.
Abstract:
In a wireless communication system, there is a method of transmitting over a reverse link, where a medium access control layer multiplexes data from upper level layers onto transport channels that are used based on whether the user is in a scheduled transmission mode or an autonomous transmission mode. The transport channels may be mapped to one or more physical channels associated with a particular transport channel, based on whether the transport channel is dedicated for use in the scheduled or autonomous mode.
Abstract:
Rather than transmitting a large full Broadcast-Multicast Services (BCMC) Parameters Message (BSPM) containing a full set of BSPM parameters pertaining to all active BCMC flows within a sector on an infrequent basis, smaller-sized differential or partial BSPMs are instead transmitted. Differential BSPMs contain updated information for existing flows or information for new flows, and because of their smaller size, can be transmitted more frequently than full BSPMs. A mobile terminal receiving a differential BSPM updates the flows with the information contained within the differential BSPM or adds the information contained within the differential BSPM for a new flow. Partial BSPMs divide the flow information contained in a large full BSPM over a plurality of smaller-sized partial BSPMs, which are separately and sequentially transmitted at different times. A mobile terminal receiving these partial BSPMs then reconstructs the full BSPM from a collection of received partial BSPMs.