Abstract:
A display device includes an electrode layer and a liquid crystal layer. The electrode layer has a first electrode and a second electrode. The second electrode is opposed to the first electrode and having a plurality of openings extending in a same extending direction. The liquid crystal layer is disposed on the electrode layer. The liquid crystal molecules of the liquid crystal layer in a region in proximity to one side of the opening and liquid crystal molecules of the liquid crystal layer in a region in proximity to another side of the opening, the sides of the opening being opposed to each other in a width direction of the opening, are rotated in opposite directions from each other and aligned.
Abstract:
A display device includes: a display layer; plural first electrodes formed to be arranged above the display layer; a shield electrode formed apart from the plural first electrodes so as to surround the whole plural first electrodes along an arrangement surface; an insulating layer; and a semiconductive layer formed opposite to the first electrodes and the shield electrode so as to sandwich the insulating layer, wherein the difference between an average potential of the first electrodes and an average potential of the shield electrode is equal to or less than 0.5V.
Abstract:
Disclosed herein is a display device including a substrate, a plurality of pixel electrodes arranged in a form of a matrix in a plane parallel with the substrate, a display functional layer exerting an image display function on a basis of an image signal supplied to the plurality of pixel electrodes, a driving electrode opposed to the plurality of pixel electrodes, and a plurality of detecting electrodes arranged in a form of a plane opposed to the driving electrode, separated and arranged at a pitch of a natural number multiple of an arrangement pitch of the pixel electrodes in one direction in the arrangement plane, and each capacitively coupled with the driving electrode.
Abstract:
Disclosed herein is a display device with a touch sensor, including: a plurality of display pixel electrodes; a common electrode configured to be provided opposed to the display pixel electrodes; a display function layer configured to have an image display function; a display control circuit configured to apply a display voltage between the display pixel electrodes and the common electrode based on an image signal and carry out image display control so that the display function of the display function layer be exerted; and a touch detection electrode configured to be provided opposed to the common electrode and form capacitance between the touch detection electrode and the common electrode.
Abstract:
A display device includes: a plurality of drive electrodes extending in a first direction and arranged side-by-side in a second direction with an inter-electrode slit in between; and a plurality of pixel electrodes arranged in matrix in the first and second directions. Each of the drive electrodes has one or more inner-electrode slits, and a center of the pixel electrode is located in the inter-electrode slit or in the inner-electrode slit.
Abstract:
A liquid crystal device is provided which includes: a first substrate and a second substrate that are disposed to face each other; a liquid crystal layer that is sandwiched between the first substrate and the second substrate; a first electrode that is provided on the liquid crystal layer side of the first substrate; an insulating layer that is provided on the liquid crystal layer side of the first electrode; and a second electrode that is provided on the liquid crystal layer side of the insulating layer, in which the first substrate has formed thereon a plurality of data lines and a plurality of scan lines which intersect each other; sub-pixels are formed at regions surrounded by the data lines and the scan lines; the second electrode has a plurality of linear electrodes that is disposed with a gap therebetween; each of the plurality of linear electrodes extends in a long-axis direction of the sub-pixels and has at least one bent portion; the bent portion has such a shape that both sides thereof are inclined in opposite directions with respect to the long-axis direction of the sub-pixels; and the data lines or the scan lines are bent in an extending direction of the linear electrodes having the bent portion.
Abstract:
An anisotropic scatterer is configured to allow a scattering characteristic of light in a display region of a display device to have an angle dependence, and is configured to change the scattering characteristic of the light continuously in an in-plane direction.
Abstract:
A semiconductor device including: one or more pieces of first wiring having a main wiring section and a bifurcation wiring section; one or a plurality of pieces of second wiring having a trunk wiring section and a plurality of branch wiring sections within a gap region between the main wiring section and the bifurcation wiring section; one or a plurality of transistors each divided and formed into a plurality of pieces, the plurality of branch wiring sections individually functioning as a gate electrode and the one or plurality of transistors having a source region formed within the main wiring section and within the bifurcation wiring section and having a drain region formed between the plurality of branch wiring sections; and one or a plurality of pieces of third wiring electrically connected to the drain region of the one or plurality of transistors.
Abstract:
An imaging apparatus includes: a sensor substrate, wherein the sensor substrate has plural photoelectric conversion devices and driving devices thereof formed on a substrate, signal lines for reading imaging signals obtained in the photoelectric conversion devices through the driving devices and relay electrodes electrically connecting between the driving devices and the signal lines to relay between them.
Abstract:
The present disclosure provides a display apparatus and an electronic apparatus wherein appropriate stereoscopic display can be carried out irrespective of the viewpoint position. The display apparatus includes a display section configured to have a plurality of pixels and display a plurality of viewpoint images allocated to different ones of the pixels; a detection section configured to detect an observation angle of an observer; and a display controlling section configured to change displaying positions of the viewpoint images at the pixels in response to the observation angle.